AMATH 483/583
High Performance Scientific Computing

Lecture 19:
Advanced Message Passing, Collectives,
Performance Models, Eigenfaces

Xu Tony Liu, PhD
Paul G. Allen School of Computer Science & Engineering
University of Washington
Seattle, WA



Administrative

* Fill out course evaluations!

* Final assighment is out, due Friday midnight June 10t"
* No physical office hours at LEW 315

e Zoom office hours instead

* Link will be posted through announcement



Top500 As of May 30", 2022 (top500.0rg)

* ORNL’s Frontier First
to Break the Exaflop
Ceiling!

* HPE Cray EX
architecture

1.102 Exaflop/s

8,730,112 total AMD
EPYC 64C 2GHz
processors

AMD Instinct™ 250X
accelerators

Slingshot-
11 interconnect

Rank

System Cores

Frontier - HPE Cray EX235a, AMD Optimized 3rd 8,730,112
Generation EPYC 64C 2GHz, AMD Instinct M
Slingshot-11, HPE

NAOE/SC/Nalr Ridaa N
puE/SU/UaK Kiage |

Nyationatl Laporatiory

United States

7,630,848

Supercomputer Fugaku - Supercomputer Fugaku,

t D, Fujitsu

AO4FA 480 £.ZGHZ, 10TU INnterconnt
RIKEN C
RIALCIN |

Japan

LUMI - HPE Cray EX235a, AMD Optimized 3rd 1,110,144
Generation EPYC 64C 2GHz, AMD Instinct MI1250X,

>lingshot-11, HPE

Finland

Summit - IBM Power System AC922, IBM POWER9 22C 2,614,592
3.07GHz, NVIDIA Vo -rail Mellanox EDR
Infiniband, IBM

DOE/SC/0Oak Ridge National Laboratory

United States

AMATH 483/583 Sp 22 U of Washington Xu Tony Liu

Rmax
(PFlop/s)

1,102.00

442.01

151.90

148.60

Rpeak
(PFlop/s)

1,685.65

537.21

214.35

200.79

Power
(kW)

21,100

29,899

2,942

10,096



Outline

* Previously
* Laplace’s equation on a regular grid

* Non-blocking operations
e Collectives
* Performance models

* Eigenfaces



Laplace’s Equation on a Regular Gri

J Q

/

¥

N+1

oS

0 onf h
f on of)

V¢
¢

ﬁ Discretization

Ti-1,+tTix1,5 +Tj-1+ X541 — 4%‘,;’ =0

Tij = (Ti-1,j + Tit1,j + Toj-1 + Tijy1)/4

The value of each
point on the grid

\

The average of
its neighbors

_:UO_

X1
X2




lterating for a solution

Approximation at || Average of approximation
while (! converged() iteration k+1 at iteration k
Cor for (size_t i =1; i < N+1; ++1) /
Zi E for (size j=1; j < N+1; ++j) ‘
i y(i,j) = (x(i-1,j) + x(@E+1,j) + x(i,j1 At end of each outer
- swap (x,¥); Only need to use two | —— iteration: new
] d arrays to do iteration: becomes old (and v.v.)
AT
old agr;pl new g
T ?’_]—7.] L= x’l,]
N+1 ]
/ /
Li,j ] -
351 i TGt
! |




class Grid -
Gridisa 2D

array

class Grid { — | Constructor

public:
explicit Grid(size_t x, size_t y) :

double &operator() (size_t i, size_t j)
{ return arrayDatali*yPoints + jl; }
const double &operator() (size_t i, size_t j) const
{ return arrayDatali*yPoints + jl; }

xPoints(x+2), yPoints(y+2), arrayData(xPoints*yPoints) {}

T~

size_t numX() const { return xPoints; }
size_t numY() const { return yPoints; }

Accessor

private:

size_t xPoints, yPoints;

std: :vector<double> arrayData; _ Storage
s

AMATH 483/583 Sp 22 U of Washington Xu Tony Liu




Decomposition

Original
problem

lobal | Decompose into P| Gilobal

N

/

Index
from 1

w?z v =

7

(

/
=

Index
to N

N—

ol =

partitions
yd
N
P
—>

1

N
P

+1

N

Qii\\

index space

Partitioned

||||||||||||||||| NH

for (size_t i
for (size_t j
y(i,j) = (x(i-1,7) + x(i+1,3) + x(4,j-1) + x(i,j+1))/4.0;

AMATH 483/583 Sp 22 U of Washington Xu Tony Liu

= 1; i < N+1; ++i)
= 1; j < N+1; ++j)

N

—_

~ =

=

—_

=

Local

AN

SPMD
index space

AN

All are
identical




Decombposition

Boundary
\.

Boundary

( One crucial

/| difference

+1

So solving

this problem

N
P

N
P

“as-if”

N
—+1

N

To the local / SPMD
code, the boundary

P

Not part of the
original problem

and as-if are the same

N

N\

for (size_t i = 1; i < N/P+1; ++i)

for (size_t j

1; j < N+1; ++j)
y(i,j) = (x(i-1,j) + x(i+1,j) + x(i,j-1) + x(i,j+1))/4.0;

AMATH 483/583 Sp 22 U of Washington Xu Tony Liu

N
P 0
|s the same as solving

lots of the same
problem but smaller

9



As-|f

Always This is the entire
writey |[(! converged()) { / program

or (size_t i = 1; 1 < N+1; ++i)
or (size_t j = 1; j < N+1; ++j)
y(i,j) = (x(i-1,3j) + x(i+1,j) + x(i,j-1) + x(i,j+1))/4.0;
swap (x,y) ;
+

Always | Not changed - Rows need to be

read x - during an as-if only during
/ iteration iteration

This changes only on
(on the swap())

AMATH 483/583 Sp 22 U of Washington Xu Tony Liu 10




Compute / Communicate To make as-if, we

need to update
the boundary cells

With their “as-
if” values

! Before they are
read at the next
outer iteration

Very
Important
Slide!!

AMATH 483/583 Sp 22 U of Washington Xu Tony Liu 11



Compute / Communicate

while (! converged()) A
~ for (size_t i = 1; i < N+1; ++i)

_ swap(x,y);

+

Standard terminology
for as-if boundary is
“ehost cell” or “halo”

for (size_t j = 1; j < N+1; ++j) ﬁi///
y<1,J) = (X(l_laJ) + X(1+1,J) + X ,j_l) + X(1,J+1))/4-O;

make_as_if(x); // Communicate ghost cellé}—\\\\

ghost

P1 , P1

Compute -

AN

//'

IIIIIIIIIIIIIII

Communicate

/

amaEEsuEREREREEEEE

ghost b

P2

) -

AMATH 483/583 Sp 22 U of Washington Xu Tony Liu

12




Compute / Communicate

“Bulk Synchronous
Parallel” (BSP)

NO Compute Communicate Compute / Communicate Compute Communicate
N1 Compute Communicate Compute Communicate Compute Communicate
NK
NP Compute Communicate Compute Communicate Compute Communicate
/ / :
/ Time

This is an almost
universal pattern

Processors are
still only loosely
coupled

But the compute /

communicate pattern keeps
them synched in a bulk sense




Upndating Ghost Cells

ghost ghost
— = P1 P1
//

P2 \ P2
MPI_Send( ); // to upper meighbor
MPI_Send( ); // to lower meighbor
MPI_Recv( ); // from lower neighbor
MPI_Recv( ); // from upper neighbor

AMATH 483/583 Sp 22 U of Washington Xu Tony Liu 14



Exchanging halos (updating ghost cells)

* What happens with this set of
operations?

* Have we seen this before?

* Behavior depends on
implementation of Send (not its
semantics)

 Size of message (use of eager vs
rendezvous protocol)

e System dependent

* Most MPI implementations have
diagnostics for this

When can
we proceed?

( Proces

Sen , .. .)\><

When send
returns

AMATH 483/583 Sp 22 U of Washington Xu Tony Liu

e Process Q

-Send (P, ...)
® Recv(Q, ...)
\_ W,

But what if send
doesn’t return
until message is
received?

15




Where do

System might

buffer the data ¢

System might

\ Process P /

Buffer

Data |

buffer the data

\Process (\5\
\

\ Good thing or
Buferl had thing?

messages go when you send 1 system might not

buffer the data

Process P

Process Q

Data 1

Data

Data \
Might buffer

w2520 MEMESSAEE.,

|

Not others

16




MPI Send

#include <mpc.h>
void Comm: :Send(const void* buf, int count, const Datatype& datatype,
— int dest, int tag) const

* MPI_Send is sometimes called a “blocking send”

e Semantics (from the standard): Send MPI_Send returns, it is safe to reuse the
buffer

* So it only blocks until buffer is safe to reuse
* (Recall we can only specify local semantics)

AMATH 483/583 Sp 22 U of Washington Xu Tony Liu 17




#include <mpt.h>
void Comm: :Recv(void* buf, int count, const Datatype& datatype,
— int source, int tag, Status& status) const

void Comm: :Recv(void* buf, int count, const Datatype& datatype,
— 1int source, int tag) const

* Blocking receive

e Semantics: Blocks until message is received. On return from call, buffer will
have message data

AMATH 483/583 Sp 22 U of Washington Xu Tony Liu 18



Unbuffered Communication

* Buffering can be avoided

e But we need to make sure it is safe
to touch message data
e Block until it is safe

e Return before transfer is complete and
wait/test later

Process P

Data 1

Process Q

v Data




Some other solutions

e Process P

Send(Q: -..)

Recv(Q, ...) 4

e Process Q

Recv(Q, ...)

Send(P, ...)

\
\. Y

Properly order
sends and recvs

\

Difficult and
breaks spmd

\_ J

Simultaneously
send and recv

4 Process P

|

e Process Q

Sendrecv(P, .. .)L

4 Process P

\ /

e Process Q

Bsend (P, ...):::::=>‘=:::::ZBsend(Q, ..
Recv(Q, ...) Recv(Q, .

)
)

20

»| Sendrecv(Q, ...)
\_ /
Explicitly

buffer




Non-Blocking Operations

* Non-blocking operations (send

_and rec_elve) return onliCh endiP)
immediately Irecv(Q) Irecv(P)
" ” Waitall Waitall
e Return “request handles” that o Se—
can be tested or waited on Process P Process Q
* Where progress is made (and
where communication . N ~
PR : Irecv(Q) Irecv(P)
happens) is implementation sand(Q) 1send(P)
specific Waitall Waitall

Process P Process Q

21



Non-blocking (immediate) operations

Returns
immediately

>

What were
semantics of Send?

4 Process P

T

How do we know
when it is safe?

" Isend(Q, ...)
ecv(Q, ...)
Waitall

\_ ,

Note normal
receive

e Process Q

Isend(P, ...)
Recv(Q, ...)
Waitall

L

T

Isend returns a
request handle

That we wait on
until buffer is safe

AMATH 483/583 Sp 22 U of Washington Xu Tony Liu

22



Non-blocking (immediate) operations

There is also a non-

blocking receive /| Process P /| Process Q
~ . .
What were Isend(Q, ...) Isend(P, ...)
semantics of Recv? recv(Q, ...) Irecv(P, ...)
Waitall Waitall
Irecv also returnsa |/ \L \ Y, 1\ y,
request handle \ \
That can be waited on We can wait on all
and will return when requests together
data are ready (send and recv)

AMATH 483/583 Sp 22 U of Washington Xu Tony Liu 23



Before

4 Process P e Process Q
Isend(Q, ...) Isend(P, ...)
Irecv(Q, ...) Irecv(P, ...)

Waitall Waitall

\ / \. /




After

4 Process P e Process Q
Irecv(Q, ...) Irecv(P, ...)
Isend(Q, ...) Isend(P, ...)

Waitall Waitall

\ / \. /




After

Put the non-
blocking recv first [—

Send later

4 Process P

| EEE—

e Process Q

!

s Irecv(Q, ...)
Isend(Q, ...)
Waitall
\_ ),
I
Posts recv

Irecv(P, ...)

Isend(P, ...)
Waitall

\_ ),

No unexpected
messages

AMATH 483/583 Sp 22 U of Washington Xu Tony Liu

26



Bindings for non-blocking receive

Request Comm: :Isend(const void* buf, int count, const
— Datatype& datatype, int dest, int tag) const

Request Comm: :Irecv(void* buf, int count, const
— Datatype& datatype, int source, int tag) const

27



Communication completion: Wait

void Request::Wait(Status& status)
void Request::Wait()

static void Request::Waitall(int count, Request

— array_of_requests[], Status array_of_statusesl[])
static void Request::Waitall(int count, Request

— array_of_requests[])

static int Request::Waitany(int count, Request
— array_of_requests[], Status& status)
static int Request::Waitany(int count, Request
— array_of_requestsl[])

AMATH 483/583 Sp 22 U of Washington Xu Tony Liu

28



Communication completion: Test

bool Request::Test(Status& status)
bool Request: :Test()

static bool Request::Testall(int count, Request

— array_of_requests[], Status array_of_statusesl[])
static bool Request::Testall(int count, Request

— array_of_requests[])

static bool Request::Testany(int count, Request

— array_of_requests[], int& index, Status& status)
static bool Request::Testany(int count, Request

— array_of_requests[], int& index)

AMATH 483/583 Sp 22 U of Washington Xu Tony Liu

29



Collectives

* Collective operations are called by ALL processes in a communicator.

 MPI_BCAST distributes data from one process (the root) to all others in a
communicator

 MPI REDUCE combines data from all processes in communicator and returns it
to one process

* In many numerical algorithms, SEND/RECEIVE can be replaced by
BCAST/REDUCE, improving both simplicity and efficiency



Bcast

void MPI::Comm: :Bcast(void* buffer, int count, const MPI::Datatype& datatype,
— int root) const = 0O

o | A

Broadcast

e
> > P> P

AMATH 483/583 Sp 22 U of Washington Xu Tony Liu

31




Reduce

void MPI: :Intracomm: :Reduce(const void#* sendbuf, void* recvbuf, int count,
— const MPI::Datatype& datatype, const MPI::0p& op, int root) const

PO A+B+C+D) A

Reduce

AMATH 483/583 Sp 22 U of Washington Xu Tony Liu

32




Allreduce

void MPI: :Comm: :Allreduce(const void* sendbuf, void* recvbuf, int count, const
— MPI::Datatype& datatype, const MPI::0p& op) const=0

PO A+B+C+D) A

-lji A+B+C+D E3

Allreduce

P2 A+B+C+D C

P53 |asBicoD D

AMATH 483/583 Sp 22 U of Washington Xu Tony Liu 33




Scatter/Gather

void MPI::Comm: :Scatter(const void* sendbuf, int sendcount, const MPI::Datatype& sendtype,
— void#* recvbuf, int recvcount, const MPI::Datatype& recvtype, int root) const

o AB|C|D A

Scatter
P B

Gather

AMATH 483/583 Sp 22 U of Washington Xu Tony Liu

34




Scatter/Gather

void MPI::Comm: :Gather(const void* sendbuf, int sendcount, const MPI::Datatype& sendtype,
— void* recvbuf, int recvcount, const MPI::Datatype& recvtype, int root, const = O

o AB|C|D A

Scatter
P B

Gather

AMATH 483/583 Sp 22 U of Washington Xu Tony Liu

35




Allgather

void MPI::Comm::Allgather(const void* sendbuf, int sendcount, const MPI::Datatype& sendtype,
— void#* recvbuf, int recvcount, const MPI::Datatype& recvtype) const = 0

| A B

Allgather >

>\ | 2| PP
O OO 0

AMATH 483/583 Sp 22 U of Washington Xu Tony Liu

36




Alltoall

void MPI: :Comm: :Alltoall(const void* sendbuf, int sendcount,
— void* recvbuf, int recvcount,

const MPI::Datatype& sendtype,
const MPI::Datatype& recvtype)

o |AO|A1 A2|A3 A0|BO |CO |DO
P 1B0|B1|B2 B3 A1/B1|C1 D1
7 1C0OIC1/C2|C3 - > A2|B2 |C2|D2
3 1D0|D1/D2|D3 A3|B3 |C3 |D3

22 U of Washington Xu Tony Liu




All Reduce

All data is sent
to root

How many
sends?

How many
receives?

Cost?
Scalability?

Root sends
back out to all

AMATH 483/583 Sp 22 U of Washington Xu Tony Liu

38



All Reduce

How many
Root sends

back out to all

- sends? /
All dataissent| @

@5@ & dt \5

How many

Cost?
Scalability?

What is the
best ordering?

AMATH 483/583 Sp 22 U of Washington Xu Tony Liu

receives?

39



Parallel Random Access Machine

Memory shared

Some number (fixed
or infinite) number

by all processes

Shared Memory |

of processors

I

Processors all execute

(but can lay out)

/
same steps in synchrony /

Completely UMA

PP Ps

At each cycle, processors
read, write, or compute
(one operation)

Powerful tool for
analysis of parallel
algorithm

(O(1) read/write)

Py

Pyl -
\ Everything interesting in
parallel computing is

about data dependence

N\

Assume tasks done in
parallel are perfectly
parallelizable




PRAM cont. Reads and writes
need to be ordered
* Several types of PRAM

e EREW - Exclusive Read Exclushe Write /

Writes need to be ordered

e CREW - Concurrent Read Exclusive Write / Reads need to be ordered

e ERCW - Exclusive Read Concurrent Write
e CRCW - Concurrent Read Concurrent Write

/

Nothing needs to be ordered

e Stronger models can be emulated by weaker méuews

Shared Memory

Pi|Pa|| Ps||FPs




NO

N1

NK

NP

Compute / Communicate

“Bulk Synchronous
Parallel” (BSP)

Compute Communicate Compute Communicate Compute Communicate
Compute Communicate Compute Communicate Compute Communicate
Compute Communicate Compute Communicate Compute Communicate

/

/

/

This is an almost
universal pattern

Processors are
still only loosely
coupled

Time

But the compute /

communicate pattern keeps
them synched in a bulk sense




Performance Model

Tcommunicate = Tlatency + Thanawiath = Tp + Tnic * Size

Tseq

Tcompute + Tbandwidth + Tlatency

Tse
Speedup = 1=
Tparallel
< Send >
Compute Wait Transfer Compute
Compute Transfer | Compute
N e

Receive

Send
e
Compute Transfer Compute
Compute Wait Transfer | Compute
< , >
Receive




Synchronous vs Asynchronous

Receive

Send >
Compute Wait Transfer Compute
Compute Transfer | Compute
<>

Send
Compute Transfer Compute
Compute Wait Transfer | Compute
< . >
Receive




Bu

NO
N1
NK

NP

k Synchronous Parallel (BSP)

Series of supersteps

Compute can only use
data present at

/ beginning of superstep

A A
| | |
Compute Communicate Compute Communicate Compute Communicate
Compute Communicate Compute Communicate Compute Communicate
Compute Communicate Compute Communicate Compute Communicate
> \ Processes send and
Time

AMATH 483/583 Sp 22 U of Washington Xu Tony Liu

receive up to h messages




BSP cont.

; Throughput of the
p processes [~ / network is g
—_| Andthereareh
: Compute Communicate ~ Sync MeSSages
S
/iT Superstep \ )
| N

What is

compute time? What is communicate

time in terms of g and h?

Valiant, L.G. Optimally universal parallel computers. Phil. Trans.
Total length of a R. Soc. Lond. A326 (1988) 373-376.

U perStep Is L Leslie G. Valiant, A bridging model for parallel computation,
Communications o‘f the ACM, v.33 n.8, p.103-111, Aug. 19996

AMATH 483/583 Sp 22 U of Washington Xu Tony Li




BSP Model

Compute

Communicate

Sync

Superstep

AMATH 483/583 Sp 22 U of Washington Xu Tony Liu

>

47



BSP |\/|Od€| w; hz S

" . ' ) r \

Compute Communicate  Sync

< > >| [+
(/




BSP |\/|Od€| w; hz S

" . ' ) r \

Compute Communicate  Sync

= >
max w; + max h;g + s
(% 1




BSP with asynchronous communication
3% h; S
— -~ ———— —

\
/ﬁ

/
Compute Communicate Sync

< >
max(w;, hig) + s




LogP

* Parameters (measured in processor , Os ,
cycles) Compuie Compute
* L -upper bound on latency for a single g/
message
* 0 - overhead to transmit or receive a ' 7
message Compute Compute
* g - minimum gap between consecutive |« > | >
messages L Or

* P-number of processors o , _
* Finite capacity constraint

— At most [ L/g | messages can be in transit
from or to any given processor at one time

— Processors that attempt to exceed this limit
stall until the message can be sent



LogP -~
 Send single message SR ~ SR
g
T'=20+ L g
g
Compute Compute

* Ping-pong round trip - . _

T — 4o+ 2L |< Lo

T

* N messages in a row

T =L+ (n—1)max(g,0) + 20

\
Why?

AMATH 483/583 Sp 22 U of Washington Xu Tony Liu



LogP cont.

* Allows more precise scheduling of communication

* Reading a remote memory location
* BSP - next superstep, L cycles
* LogP - 2L + 4o cycles

* No special synchronization hardware

* Parameters can be experimentally determined for a given
machine/architecture

* No special treatment for long messages



Applications: Reduce

* BSP
* O(log n) supersteps
* L =time to read two memory locations and write one



LogP Analysis

* Linear reduce
» o for each processor to send its value to the root
e (P-1)o + L for the root to receive them
e 0+ (P-1)*max{g,0} + L




LogP Analysis

* Binary tree
* o for each leaf processor to send its value to its parent

* 0+ max{g,o} + L + o for each non-leaf processor to receive values from each
of its children and send the result to its parent

* 0+ (log P)(o + max{g,0}+ L+ 0)

0 Jol
d@é; @%__



Name This Famous Person

AMATH 483/583 Sp 22 U of Washington Xu Tony Liu 57



Name This Famous Person

AMATH 483/583 Sp 22 U of Washington Xu Tony Liu 58



(@]

Fundamental Theorems oy Algebra:Every

i=0 \
Arithmetic: Every

number is a product
of primes

: il d rt t
O i | rmae= [

\ RN

l]:{\’/ll;: n \ !

- d
G0 =10

4 /(i) Calculus: T

Az x

a x,r, x; x, b

the derivative is the
derivative of the integral

he integral of

polynomial has a root

David Wheeler via Butler

AMATH 483/bGrrpson Vi Ardrew Koenig

Software engineering: We

can solve any problem by

introducing an extra level
of indirection

59




Linear Systems

Every linear space
has a basis

1=0 N Any element in the space can

sums of members of the basis

Nice orthonormal
basis

be expressed as weighted

X

T = (040,041, .. .CVN_l)

(mOa wl“wN—l) The same element has

—— | multiple representations




Linear Systems e; = (0,0,...1...0)
dim.X

L = E ;Y
i=0

L — (QZ‘(), .13‘1...56]\[_1)

What is xA?

yd
r=ap(l1,0,...,0)+a1(0,1,0,...,0)+ ...+ an_1(0,0,...,1)

T = (Oé(),al, .. .OéN_lk

Which is equal to?




Transforming From One Representation to

Another

r=(xg,T1...CN_1) ‘ T = (g, Qq,..

dim.X
T = Z QG Y; ‘ T = Yo T A1Y1
1=0
What is this?
Y = [y()ayla .. 7yN—1] 7

AMATH 483/583 Sp 22 U of Washington Xu Tony Liu

-OéN—l)

ON_1YN-1

62



Transforming From One Representation to

Another
Yo,0 Yo,1
Y1,0 Y11
YN—-1,0 YN-1,1
Yo,0 Yo,1
Y1,0 Yi.1
YN—-1,0 YN-1,1
Yo,0 Yo,1
Y1.,0 Yi.1

YN—-1,0

YN—-1,1

Yo,N—1
Yi,N—1

YN—1,N—1

Yo,N—-1
Yi,N—1

YN—1,N—1

Yo, N—1
Yi,N—1

YN—1,N—1

I — YYo=z

Conditions?




Principal Components

* Given a set of data, what is the best basis for representing elements

of that set

12

10

AMATH 483/583 Sp 22 U of Washington Xu Tony Liu

10

64



Principal Components Analysis

* We are given a training set X of faces

* We want to find an orthonormal basis that can form an alternate
representation of faces with as few dimensions as possible

* Axes are the “principal components”
* First axis captures as much of the data set as possible

* Next axis captures as much of the data that isn’t captured by first

* And so on
* We can represent any face with linear combination of the principal

components



Principal Component Analysis

Training set Mean

Principal
components

Covariance

AMATH 483/583 Sp 22 U of Washington Xu Tony Liu 66



Principal C”m“.”nmnf Analvsis Representation in
Project face onto

feature space

/ principal components /

=m ] {¢07¢17'“7¢N—1}

How do we
compute these?

{¢O,¢1,...,¢N1}/ ; '

Linear combination of
principal components

Recreate original
face

AMATH 483/583 Sp 22 U of Washington Xu Tony Liu 67




Computing Principal Components

Let {fo, f1,... far} be as set of faces. Each face f; € RY where N is the total
number of pixels in a face image and the elements of each f; all have the same cor-
respond to the pixels in face image ¢ (without loss of generality, take lexicographical
ordering). Let F € RM*N be a matrix in which every column i consists of f;.

Let ® € RYXN be an orthonormal matrix where each column is a feature vector

¢;. For a given face f; we let f; = Zf:_ol a; j¢; and define ® such that for each

K the difference between f; and f; is minimized for i = 0,1,.... N — 1.

Let's start with the case of K = 0. Then each ﬁ = «;Pg. Ihe best approximation
of f; will be the projection of f; onto ¢y, i.e., a; = (fi, ¢o).



Computing Principal Components

The sum of squares difference between all of the f; and their projection onto ¢ is

Z ||fz fza¢0 ¢O||2

The best choice for ¢ is thus the one that minimizes this expression, i.e.,

o = argmin » || f; — fz,¢o>¢0”2—a1"gmmz —{fi, b0) o, fi — (fi, do) o)
1=0

= argmin Z (<fu fz> — <f27 <fz, ¢0>¢0>)



Computing Principal Components

N—-1 N—-1
¢o = argmax » (fi, (fi,d0)¢o) = argmax » {{(¢o, fi) f, bo)
i=0 i—0

N-1 i N-1 |
= argmax y _ ¢¢ fif] ¢o = argmax | ¢f (Z fif! ) 2
i=0 i i=0 _

= argmax (<§b Y C¢O>)
/ IS Rayleigh

Covariance Quotient
Matrix




Constraiped - Ontimjzation Maximize

Lagrangian
L(gb@,C%} — 00 (1 = {(¢o, ¢0)) o (

¢0, Co)

Will be maximized
VL(¢0) =07 where gradient is zero /<¢Oa ¢o) =1
VL(ng) — Cgbo — 00% — () Subject to
d
Gradient of the
Lagrangian Cdbp — Corresponding
o S
/}Q/ O¢O eigenvector
Largest

e Ige nva | u e AMATH 483/583 Sp 22 U of Washington Xu Tony Liu 71




Eigenfaces

f = read_face();
6=U"f

OIK : N| =0
f=U¢



AMATH 483/583 Sp 22 U of Washington Xu Tony Liu 73



Our Code f = read_face();

* Read in faces data b = UTf
 Compute mean of all faces
* Subtract mean from every face gb[K ; N] — ()

* Compute covariance matrix C
: .. : / U¢
* Compute elgendecomposmonw C f —

* Write out eigenface images

Most
computationally
expensive step

We want to
parallelize this




Thank Youl!

AMATH 483/583 Sp 22 U of Washington Xu Tony Liu

75



Creative Commons BY-NC-SA 4.0 License

00,

© Andrew Lumsdaine, 2017-2022
Except where otherwise noted, this work is licensed under

https://creativecommons.org/licenses/by-nc-sa/4.0/

AMATH 483/583 Sp 22 U of Washington Xu Tony Liu

76



AMATH 483/583 Sp 22 U of Washington Xu Tony Liu 77



