AMATH 483/583
High Performance Scientific

Lecture 11: Computing
Shared Memory Parallelism, Correctness,
Performance

Xu Tony Liu, PhD
Paul G. Allen School of Computer Science & Engineering
University of Washington
Seattle, WA



Overview

* Review
* Multiple cores
* Processes / threads as resource / computation abstraction
» Parallelization strategies for multiple computations

* Correctness
e Race condition
* The critical-section problem

 Performance
e Amdahl’s law
e Gustaffson’s law
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Processes and Threads

* A process is an abstraction for a collection of
resources to represent a (running) program
* CPU
* Memory
e Address space

* A thread is an abstraction of execution (using the
resources within a process)

e Can share an address space

Process

Thread #1

Thread #2

Thread #3

Time



Process Abstraction

_

Stored in Process
Control Block (PCB

Set of information
about process
resources

Sufficient to be able
to start a process
after stopped

' Scheduling parameters

Also for accounting /

administrative
purposes

Process management

- Regqisters

Program counter
Program status wo
Stack pointer
Process state

Memory management
Pointer to text segment
Pointer to data segment
Pointer to stack segment

File management
Root directory
Working directory
File descriptors
User ID

Group ID

Priority

Process ID
Parent process

What does program
counter represent?

Process group
Signals

Time when process started
CPU time used

- Children’s CPU time

Time of next alarm




Process Lifetime 'Merruptor Scheduler

Can have many system call dispatch
many processes \
running “at the exit
same time ( Ready /
Admitted |~
|/O or event /0 or wait

completion event




Context Switch
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.
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How Do We Run Multiple
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Multitasking

Tasks can be
scheduled round

robin (time sliced)’
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Multitasking on Multicore

Time sliced
and mapped to
separate cores

A single threaded

task can only use
one core at a time

| \
PR

\4

—grn:uo'n<—|—§rn:uo'n<—|

ro

Fetch

r1i

r2

r3

r4

r5

ro

Instructions

A

Load/Store

Fetch

r1i

r2

r3

r4

r5

Instructions

A

Load/Store

(1)

L2

L1
(D)

L2

L3

Load/Store

11

12

13

D1

D2

10




Multitasking on Multicore

Parallelism!

Time sliced A multithreaded task
and mapped to can use multiple
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Hardware Same variable can be

Cache Coherence managed in two different caches
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I\/Iultitaskingﬂl\/lulticor
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Parallelization Strategy

A
vy

PATTERNS
FOR PARALLEL

Timothy Mattson, Beverly Sanders, and Berna Massingill.
2004. Patterns for Parallel Programming(First ed.). Addison-
Wesley Professional.

Finding
Concurrency

'

Algorithm
Structure

'

Supporting
Structures

'

Implementation
Mechanisms

14



Findine Conclirrencv

Into tasks that can

execute concu rrently :'

e

| [peperpenon]

Decompose problem into pieces
that can execute concurrently

e T e —

Decomposition

sk Decomposition

Data Decomposition

Units that can be operated
on (relatively) independently

Finding Concurrency

_______________________________________

Dependency Analysis

Group Tasks

!

Order Tasks

!

Data Sharing

_______________________________________

Algorithm
Structure

!

Supporting
Structures

!

Implementation
Mechanisms




Finding Concurrency

Ways to group tasks to simplify
management of dependencies

e —

Decomposition

Task Decomposition

Data Decomposition

e —— 7

Ways to group tasks to simplify

Ny

Finding Concurrency /

. Dependency Analysis”

Group Tasks

e

!

4—» Design Evaluation

Order Tasks

_______________________________________

!

Data Sharing

management of dependencies

/

!

AN

Algorithm

Ways to order tasks for

correctness, other constraints

Structure

!

Supporting

Structures

Given a decomposition,
ways to share data
among tasks

!

Implementation
Mechanisms




Algorithm Structure Fundamental

: Finding - SR
organizin rinciple
Organize around Concurrency g gp P
concurrent tasks t
Algorithm Structure
~ |Organize by Tasks | | Organize by Data Decomposition| | Organize by Flow of Data
Task Parallelism Geometric Decomposition Pipeline
Divide and Conquer Recursive Data Event-Based Coordination
Exploit potential t .
P P _ o Supporting
concurrency in divide Structures
and conquer algorithms ¢
Implementation

Mechanisms




Algorithm Structure

Finding
Concurrency

:

Fundamental
organizing principle

B e

Algorithm Structure

____________________________________________________ ——— - —

Organize by Tasks EFOrganize by Data Decomposition . Organize by Flow of Data

Task Parallelism

Divide and Conquer

. |, Geometric Decomposition

Recursive Data

Pipeline

Event-Based Coordination

Organize around a large
data structure that is
broken into “chunks”

Supporting
Structures

;

Implementation
Mechanisms

Organize around operations
on recursive data structure




Aloarithm Striictiire ,
Fundamental Finding Organize by sequence
.. . Concurrenc i
organizing principle t y of independent stages
Algorithm Structure
~ Organize by Tasks | | Organize by Data Decomposition| | Organize by Flow of Data
Task Parallelism Geometric Decomposition Pipeline
Divide and Conquer Recursive Data Event-Based Coordination
Supporting Organize by inherent
Str“‘}t“res communication among tasks
Implementation

Mechanisms




. Finding
Supporting Structure|_Cencurency

. .. Explicitly manage
Organize communication t P Y &
. AgEin shared data
and sharing between UEs Structure
> ; /]
. Safely share
Centralized control . Y
o _ Supporting Structures a queue
distributing tasks A :
< Program Structures o Data Structures i
Translate |OOp SPMD Shared Data // I\/Ianage array
bodies into tasks |} Manager/Worker Shared Queue / data partitioned
S ] i
Sets of | | [ Loop Parallelism |i | Distributed Array 7| among UEs
. RN . o |
dynamic tasks Fork/Join

Implementation
Mechanisms




Implementation Megkaniceas

Finding
Concurrency

¢

Algorithm
Structure

¢

Manage task
lifetimes

Enforce ordering

nstrain
constraints Structures

Supporting needs to be when UEs

Get data where it

don’t share memory

N

mplementation Mechanisms

__________________________________________________________

___________________________________

N N N N N e N N N N N N N N N e




Example
e Find the value of 7T

e Using formula
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Discretization

>
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Numerical Quadrature

>

4.5

4.0

3.5
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2.5 0
2.0 h
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Numerical Quadrature
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Numerical Quadrature

>

4.5

4.0
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Numerical Quadrature

>

4.5 . .
double pi = 0;
4.0 for (int i = 0; i < N; ++i) { -
T ’ ’
35 ! \} pi += h % 4.0 / (1 + ivhrixh);
3.0 \
25 0
\
— > ! i+
15 N-1
1.0 v
0.0 0.2 0.4 0.6 0.8

1.0
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Finding Co

cClLrrency\/

e —

Decomposition

Task Decomposition

Data Decomposition

_______________________________________

Finding Concurrency

_______________________________________

Dependency Analysis

Group Tasks

!

Order Tasks

!

Data Sharing

_______________________________________

Algorithm
Structure

!

Supporting
Structures

!

Implementation
Mechanisms




Finding Concurrency

>

4.5

Partial sums are
all independe/nt// concurrently

Can be computed

_—T

A

I 1
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\
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1+1
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>

: : Sum over _
Finding Concurrency bartial sums Partial sum
4.5 . . :
| | / | \(
4.0 \ L .
— kbt fi<tN
3.5 ~ h
NEETH S D S
3.0 S k=0 1=kN
k=01 i
2.5 1 \
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Finding Concurrency

Finding Concurrency
. | Dependency Analysis |
Decomposition | ’
| — o Group Tasks
/ Task Decomposition 0 t
. | Data Decomposition | | OrdertTasks
Data Sharing
Decompose total || |
sum into a sum of ] X
partial sums Each task can be Algorithm Need to sum up
Structure .
computed 7 independent
concurrently SueEeili partial sums
Structures

!

Implementation
Mechanisms




Algorithm Structure

. Finding
Partial sums are Concurrency
independent tasks !
Algorithm Structure
— Organize by Tasks EFOrganize by Data Decomposition—‘i Organize by Flow of Data \

Task Parallelism Geometric Decomposition Pipeline
Divide and Conquer Recursive Data Event-Based Coordination
Can be executed Supporting

in parallel Str“‘}t“res
Implementation

Mechanisms




Supporting Structure

Finding

Concurrency

}

Algorithm
Structure

Global sum (may or
may not be shared)

!

/

Supporting Structures

———————————————————————————————————————————————

Program Structures

Translate loop
bodies into tasks

SPMD

________________________________

Data Structures

Shared Data /

Manager/Worker

Shared Queue

. [ Loop Parallelism

Distributed Array

Fork/Join

_____________________________________________

_________________________________

Implementation
Mechanisms




Implementation Mechanisms

Use C++
async

Finding
Concurrency

¢

Algorithm
Structure

No ordering
constraints

'

Supporting

N

Structures

Use shared memory

:

Nplementatlon Mechanisms

_________________

_______________________________________

_______________________________________

N N N N N N N N N N e e




Sequential Implementation (Two Nested Loops)

Discretization

double h = 1.0 / (double) intervals;

For each set
of discretized Mi = 0.0;
' ’ = 0; k < i -+ k += blocksize) {

points for (int k = intervals;

ouble partia i = 0.0;
| double p 1_p 0.0
Compute ———for—(int i = k; i < (k+blocksize); ++i) {
partial sum partial_pi += 4.0 / (1.0 + (i*h*i%*h));

I }

___p1 += h * partial_pi;
Accumulate }

final sum

35



"hreads vs Tasks

void sayHello(int tnum) A
cout << "Hello World. I am thread " << tnum << endl;

} \

int main() {

Task

std: :thread tid[16];

o 14
for (int i = 0; i < 16; ++?l//////// Launch . — fork
tid[i] = thread (sayHello, i); threads
for (int i =0; i < 16; ++i) Wait for tasks | |
tid[i].join(); to finish
return O;

}

(ljoin”

36




Threads

returns void

Thread — ]

void partial_pi(unsigned long begin, unsigned long end) {
|~ double partial_pi = 0.0;
for (unsigned long i = begin; i < end; ++i) {
partial_pi += 4.0 / (1.0 + (i*h*ix*h));
t

return partial_pi;

Oops

How do we get
partial sums?

How do we update
global total?

+

int
main(int argc, char *argvl[])
{
double h = 1.0 / (double) intervals;

ouble pi = 0.0;
int k = 0; k < intervals; k += blocksize) {

pi += h * partial_pi;
+

std::cout << "pi is approximately " << pi << std::endl;

return O;

+
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Threads

Task

Assign task
to thread

e

void partial_pi(unsigned long begin, unsigned long end, double h, double& pi) {
double partial_pi = 0.0;
for (unsigned long i = begin; i < end; ++i) {
partial_pi += 4.0 / (1.0 + (ix*h*ixh));

}
pi += h*partial_pi;
+
int
main(int argc, char *argv([])
{

std: :vector<std::thread> threads;
double h = 1.0 / (double) intervals;

double pi = 0.0;
for (unsigned long k = 0; k < num_blocks; ++k) {
threads.push_back(std: :thread(partial_pi,
k*blocksize, (k+1)*blocksize, h, std::ref(pi)));
+

for (unsigned long k = 0; k < num_blocks; ++k) {
threads[k].join();
+

std::cout << "pi is approximately " << pi << std::endl;

return O;




Threads

Local
variable

/

Shared
variable

AN

N

void partial_pi(unsigned long begin, unsigned long end, double h, double& pi) {
double partial_pi = 0.0;

for (unsigned long i = begin; i < end; ++i) {
partial_pi += 4.0 / (1.0 + (ix*h*ixh));

+

pli += h*partial_pi;

AN

AN

Update shared
variable

39




"hreads

int main(int argc, char *argv[]) {

Container for
created threads

— Have to gpr|C|tIy
std: :vector<std: :thread> threads; tag thIS aS d
reference

Thread
constructor

Function that
will be the task

H,\K
(@)
D]
~
o

Arguments to
the function

+

double h = 1.0 / (double) intervals;

double pi = 0.0;
for (unsigned long k = 0; k < num_blocks; ++k) {
threads.push_back(
std: :thread(
partial_pi, k#*blocksize, (k+1)*blocksize, h, std::ref(pi)));

k = 0; k < num_blocks; ++k) {

std::cout << "pi is appreximately " << pi << std::endl;

return O: We are invoking
std::thread, not

partial pi E




pi

pi

pi

Results

./thrpi

is approximately 3.14159

./thrpi
is approximately 3.14159

./thrpi
is approximately 2.69322

e

e

e

Correct
Correct
Exactly same
program!
Incorrect! /
\\\\\ What

happened?

41




Name This Famous Couple

Clyde Barrow

Bonnie Parker

42



Bonme and Clvde Use ATMs_

int bank_balance =

’

void withdraw(const string& msg, int amount) {
int bal = bank_balance;

string out_string = msg + " withdraws " + to_string(amount) + "\n'";
cout << out_string;
bank_balance = bal - amount;

}

int main() {
cout << "Starting balance is " << bank_balance << endl;

thread bonnie(withdraw, "Bonnie'", 100);
thread clyde(withdraw, "Clyde", 100);

bonnie. join();
clyde.join();

cout << "Final bank balance is " << bank_balance << endl;

return O;
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Withdraw Function

int bank_balance = 300; Get balance

void withdraw(const string& msg, int amount) {
int bal = bank_balance;
string out_string = msg + " withdraws " + to_string(amount) + "\n";
cout << out_string;
bank_balance = bal - amount;

Compute the
Save new new balance

balance

44



Making Concurrent Withdrawals

[ int main() {

Launch
threads

\

thread bonnie(withdraw, "Bonnie'", 100);
thread clyde(withdraw, "Clyde", 100);
bonnie.join(); \\\\\

Arde. Fo3m0); Constructor

cout << "Starting balance is " << bank_balance << endl;

Run withdraw
function

cout << "Final bank balance is " << bank_balance << endl;

e O | Wait for
completion

45




Bonme and Clvde Use ATMs

$ ./a.out

Starting balance is 300
Bonnie withdraws 100
Clyde withdraws 100

Is this
correct?

46



Bonnie’s thread,

What Happen bal = 300

void| withdraw st string& msg, int amount) { Clyde’s thread,
int| bal ank_balance; bal — 300

string out_s = msg + " withdraws " + to_string(amt)
| void withdr onst string& msg, int amount) {

Context switch int bal”= bank_balance;

string out_s = msg + " withdraws " + to_string(amt) + "\n";

cout << out_s;

bank_balance = ba\l — amount; Context SWitCh
. . cout << out_s; PrOfIt!
bal is still 300 bank_balance = bal - amount;
} N\
bank_balance bal is still 300
gets 200 . ,

bank_balance
gets 200 Y




What Happened: Race Condition

* Final answer depends on instructions from different threads are
interleaved with each other

* Often occurs with shared writing of shared data
» Often due to read then update shared data
* What was true at the read is not true at the update



Critical Section Problem

int bank_balance = 300;

void withdraw(const string& msg, int amount) {
int bal = bank_balance;
string out_string = msg + " withdraws " + to_string(amount) + "\n";
cout << out_string;
bank_balance = bal - amount;

} AN

N\

We want to tell When some thread is executing
operating system not to this critical section, no other
run anything else here thread may execute it

49



The Critical-Section Problem

* n processes all competing to use some shared data

* Each process has a code segment, called critical section, in which the
shared data is accessed.

* Problem — ensure that when one process is executing in its critical
section, no other process is allowed to execute in its critical section.

 What do we mean by “execute in its critical section”?



Solution to Critical-Section Problem

* Mutual Exclusion - |f process Pi is executing in its critical section, then
no other processes can be executing in their critical sections

* Progress - |If no process is executing in its critical section and there
exist some processes that wish to enter their critical section, then the
selection of the processes that will enter the critical section next
cannot be postponed indefinitely

* Bounded Waiting - A bound must exist on the number of times that
other processes are allowed to enter their critical sections after a
process has made a request to enter its critical section and before
that request is granted

* Assume that each process executes at a nonzero speed
* No assumption concerning relative speed of the N processes



Critical Section Problem

int bank_balance = 300;

void withdraw(const string& msg, int amount) {
int bal = bank_balance;
string out_string = msg + " withdraws " + to_string(amount) + "\n";
cout << out_string;
bank_balance = bal - éﬁbunt;

A

\

Let’s just think about

This is a critical section .
mutual exclusion for now
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Critical Section Problem

bool lock = false; Test if another
thread is holding
the lock

void withdraw(const-sString& msg, int amount) {

int bank_balance = 300;

while (lock == true)

N Spinifitis

Take the lock

lock = true;\\\\\\\\\\\\\\\\\\

Execute ST S Fall through when lock == false

critical string out_string = msg + " withdraws " + to_string(amount) + "\n'";
: cout << out_string;

section ’

bank_balance = bal - amount;

Release lock /} lock = false;
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Aside

bool lock = false;
int bank_balance = 300;
void withdraw(const string& msg, int amount) {
string out_string = msg + " withdraws " + to_string(amount) + "\n";

cout << out_string;
bank_balance —-= amount;

} \

\

Still a race
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Aside

Then write

bool lock = false;
int bank_balance = 300;
void withdraw(const string& msg, int amount) {
string out_string = msg + " withdraws " + to_string(amount) + "\n'";

cout << out_string;
bank_balance = bank_balance - amount;

N/

/

\

/

/

\

Still a race

Read

Compute
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Critical Section Problem

Critical
section

bool lock = false;
int bank_balance = 300;
void withdraw(const string& msg, int amount) {
string out_string = msg + " withdraws " + to_string(amount) + "\n";

cout << out_string;

bank_balance = bank_balance - amount;
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Solution ()

Take the lock

Execute
critical
section ~_

L

Release lock — )

bool lock = false;

int bank_balance = 300;

\ whilW Spin if it is

Test if another

thread is holding
the lock

void withdraw(const string& msg, int amount) {

string out_stripng = msg + " withdraws " + to_string(amount) + "\n";
cout << out_string;

H

ock = true; —
lock =t Fall through when lock == false

bank_balance = bank_balance - amount;

lock = false;
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' 2) :
Solution () Test if another
bool lock = false; . .
Common thread is holding
pattern (when int bank_balance = 300; the lock
correct) L . .
void withdraw(const string& msg, int amount) {

\\\\\ string out_stri

cout << out_string;

Take the lock \\WMW Spin ifitis
N\

= msg + " withdraws " + to_string(amount) + "\n";

o; = true; ——
Fock =t Fall through when lock == false

Lock might be

= bank_balance - amount;

bank_balanc

taken between the

test and the set lock = false:
}

We’ve traded one

critical section
problem for another
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Synchronization Hardware

* Many systems provide hardware support for critical section code

* Uniprocessors — could disable interrupts
e Currently running code would execute without preemption

* Generally too inefficient on multiprocessor systems
* Operating systems using this not broadly scalable

* Modern machines provide special atomic hardware instructions
e Atomic = non-interruptable

* Either test memory word and set value
e Or swap contents of two memory words



Test and Set

bool TestAndSet (bool& target) bool TestAndSet (bool *target)
{ {

bool rv = target; bool rv = *target;

target = TRUE; *target = TRUE;

return rv: return rv:
} | \ }

| N

These are the Implemented in
semantics, not the hardware as an
implementation invisible instruction
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Compare And Swabp

void CompareAndSwap (bool& a, bool& b)
{

bool temp = a;
a = b;
b = temp:

! | N\

void CompareAndSwap (bool *a, bool *b)
{

bool temp = *a;

*a = *b;

*b = temp:
+

These are the
semantics, not the
implementation

Implemented in
hardware as an
invisible instruction
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Correct Withdraw

int bank_balance = 300;
bool lock = false;

void withdraw(const string& msg, int amount) {

Under what
condition will

we fall through?

string out_s = msg + " withdraws " + to_string(amt) + "\n";
cout << out_s;

in while the value is
\Jhile (TestAndSet (lock) == true) — 5P

: true (another thread

What is the
state of the
lock?

| holds the lock)

bank_balance —= amount;

lock = false; ————— Release the lock

}
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Correct Withdraw

int bank_balance = 300;
bool lock = false;

void withdraw(const string& msg, int amount) {
string out_s = msg + " withdraws " + to_string(amt) + "\n";
cout << out_s;

What iS the }h-:f-le (TeStAndSet(lOCk) == true)/ ”Spin |0Ck”
CPU doing? | (common pattern)
| bank’balance —-= amount;
How is it

affecting other [ 10k = false; Is this a good
threads? programming

abstraction?
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I\/Iultitaskingﬂl\/lulticor

Nonetheless, this is the
essence of parallel computing

In 1/8 the - Parallel computation isn’t
time (?) \- done until all cores are done
[LI 1Tl lll] )
3 n — o Not the same as
ro L1
Nee enOUg E r1 | <lnstructions | | (1) concu rrent
cores (8) = [ 2
> | [E rj L1 Fetch 11
- [ D —
Work needs to | ] owsoe |© |E E
be balanced Al ey e [ - -
— F r1i <Instructions | (|) [ D2
| g r2 Lo B Load/Store
fs
E L1
O O p S \:V r: Load/Store (D)
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Numerical Quadrature Task

double partial_pi(unsigned long begin, unsigned long end, double h) {
double partial_pi = 0.0;
for (unsigned Teng i = begin; i < end; ++i) {
partial_pi += &0 / (1.0 + (i*h*ixh));
+

return partial_pi;

| N

Nothing remarkable Nothing remarkable
about this function about this function
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U time 1 OS time

CP
Performance
$ time ./taskpi 500

pli 1s approxim y
2.006u 0.006s 0:02.0

.

000 1

Elapsed time

3.1

99.5%

Utilization

CP

U time 1 OS time

$ time ./taskpi 5000
pli 1s approximately
1.895u 0.008s 0:00.9

|

00 2
3.14

Elapsed time

198.

Utilization

CP

U time

\

OS time

$ time ./tas
pl 1s approximatedy
2.020u"0.007s70:00.5

1 500000000 4

Elapsed time

3.141
96.0%-

Utilization
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Performance

Elapsed time

Utilization

OS time time /taskp
CPU time \pl Is. approximat
3.669u 0.008s O:

500000000/ 8
ely 3.14459
00.48 762.5%

Nﬁ\

Elapsed time

Utilization

OS time %iriﬁ/taskp%
: p1 approximat
CPU time 3 g5 Ano-_'n

500000000/ 16
ely 3.14159

\

Elapsed time

r)C N 7N o/
Utilization

O5 time time ./taskp]
CPU time | pi is-approximat

2.963u 1.194s

Too many
threads

/

500000000/ 50000
ely 3.14A59
0:00.92 451.0Y

“5\&



Parallel Speedup, Parallel Efficiency

Speedup on p
processing units

Time to run problem
size n on one PU

N\

S(p

Time to run problem
size n on p PUs

Parallel Speedup

]/n 1 / o
n, p)

Divided by

Efficiency on p
processing units

Ideal parallel || actual parallel
execution time | | €xecution time

Speedup

/ _ T(n,1)/p n,1)/T(n,p)

T(n,p) p

_ S(p)

p
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Scaling

Parallel Speedup

10% |

Superlinear
(fishy)

Linear (ideal)

Sublinear (typical)

10°

10!

10°
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Name Thls Famous Person
- "Validity of the single processor approach to
achieving large-scale computing capabilities,”

1967.
Gene Amdahl (1922-2015)

Amdahl’s Law

AFIPS Conference Proceedings (30): 483—485,
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Limits to Parallelism (Amdahls’s Law) Sequential

Inherently < T(n,1) / execmition time
sequential

oo r |
Inherently < > < g
sequential al'(n, 1) (1 —a)T'(n, 1)\ perfectly

\ parallelizable

T(n,1) :[ozT(n, 1)]4{(1 —a)T'(n, 1)]\ Perfectly

parallelizable
= aol'(n,1)+ = (1—a)T(n,1)
/Tn 1)(a + N\ Ideal speedup (for

Sequential parallelizable portion)
portion




Limits to Parallelism (Amdahls’s Law) Sequential

nherently | _ T(n,1) e execmition time
sequential
o]
Speed = > >
PRSP aT'(n,1) (1—a)T(n,1)
\ Perfectly
T(n,1) T(n,1) .
S(p) = — : parallelizable
T(n,p) T(n,Da+1i(1-a)

(- h

1
=L ol e | i S() =
ats(l-—a) « p—+09 o

. J
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Limits to Parallelism (Amdahls’s Law) Perfectly

Inherently aT'(n,1) (1—-a)T'(n,1) —— parallelizable
. - > >
S
- >
T(n,1)
-\ | Speedup is the
Dy > To this ratio of this
T(nvp)‘p—)oo
) T'(n,1
. 1 S(p) = (n, 1
lim S(p) = — T'(n,p)
p—00 @
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Limits to Parallelism (Amdahl’s Law)
| IParaIIeII SpeledtlJpl -

= 0.05

Asym pfotically

10° | approaches 20

/

Speedup

10" |

10° - -
10° 10t 102




Limits to Parallelism

10° ¢ —
o= 0.01
3 ° Not scalable
10° | Exascale machines might _:
§ have millions of cores / |
2 Asymptotically | |
i 10 | approaches 100
On 1024 cores
10° \ .

No matter how
many cores added

Parallel Speedup

102 103
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There are no Limits (Gustafson’s Law)

* Doing the same problem faster and faster is not how we use
parallel computers

e Rather, we solve bigger and more difficult problems

* |.e., the amount of parallelizable work grows

ol (n,1) p(l —a)T'(n,1)

) T(n,p) =T(n,1) g
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There are no Limits fson’s Law) Perfectly
o' (n,1) p(1 — @)T(nﬂ)ﬁ parallelizable

< >« >

- > Parallel
T(n,1) I

Ratio of non speed T(n,p) = performance

up to speed up

S(p) _atn, D4p0-o)T(nd) _ oT(uDpI-odTnl) _ g 4 (1 — )

Bp) = 7 m—)p | lm E()=(1-a) |
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Two Types of Scaling

|deal
| ParaIIeII SpeledllJpl -
Scalable
10° Weak scalin
Strong scaling T 5
o Amdahl Gustafson
©
Q
' 10? /
Not scalable
10°

102
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Stay Tuned

e C++ threads
e C++ async()
e C++ atomics



Thank you!
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