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Overview
• Review
• Multiple cores
• Processes / threads as resource / computation abstraction
• Parallelization strategies for multiple computations

• Correctness
• Race condition
• The critical-section problem

• Performance
• Amdahl’s law
• Gustaffson’s law
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Multicore Architecture
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last 4-5 yearsCore is a 

FDREW + regs

Each runs its 
own sequence 
of  instructions

Each can access 
its own data
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might be sharedEach has memory 
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Processes and Threads
• A process is an abstraction for a collection of 

resources to represent a (running) program
• CPU
• Memory
• Address space

• A thread is an abstraction of execution (using the 
resources within a process)
• Can share an address space 
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Process Abstraction

Set of information 
about process 

resources

Sufficient to be able 
to start a process 

after stopped

Also for accounting / 
administrative 

purposes

Stored in Process 
Control Block (PCB

What does program 
counter represent?
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Can have many 
many processes 
running “at the 

same time

Process Lifetime

Ready Running

Waiting
New Terminated

Interrupt or 
system call

Scheduler 
dispatch

I/O or wait 
event

I/O or event 
completion

Admitted

exit
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Context Switch

Silberschatz, Galvin, Gagne

P0 and P1 
are running 
processes

What does 
this mean?

And this?

External 
to OS

External 
to OS

PCB = Process 
Control Block Expensive!

OS does 
not do this
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How Do We Run Multiple Programs Concurrently?
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Time

Multitasking
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Concurrency!
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Multitasking on Multicore

Instructions

Data

Fetch

Load/Store

... ...
Clock

cycle

I1
I2
I3

D1
D2

L2

L1
(I)

L1
(D)

Instructions

Data

Fetch

Load/Store

L2

L1
(I)

L1
(D)

Instructions

Data

Fetch

Load/Store

L3

F
D
R
E
W

r0
r1
r2
r3
r4
r5

F
D
R
E
W

r0
r1
r2
r3
r4
r5

Time

Time sliced 
and mapped to 
separate cores

A single threaded 
task can only use 

one core at a time
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Multitasking on Multicore

Time

Time sliced 
and mapped to 
separate cores

A multithreaded task 
can use multiple 
cores at a time

Parallelism!

Shorter 
run time! Threads can 

share memory

And L3 cache

What about L1, L2?

Access same 
variables
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Cache Coherence

Time

A multithreaded task 
can use multiple 
cores at a time

Threads can 
share memory

Access same 
variables

Same variable can be 
in two different caches

What if one 
gets modified?

Cache coherence / 
memory consistency

Hardware 
managed
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Multitasking on Multicore

In 1/8 the 
time (?)

Time

Need enough 
cores (8)

Work needs to 
be balanced

oops

Parallel computation isn’t 
done until all cores are done

Nonetheless, this is the 
essence of parallel computing

Not the same as 
concurrent
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Parallelization Strategy Finding 
Concurrency

Algorithm 
Structure

Supporting 
Structures

Implementation 
Mechanisms

Timothy Mattson, Beverly Sanders, and Berna Massingill. 
2004. Patterns for Parallel Programming(First ed.). Addison-
Wesley Professional.
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Finding Concurrency
Finding Concurrency

Dependency Analysis

Group Tasks

Order Tasks

Data Sharing

Design Evaluation

Decomposition

Data Decomposition

Task Decomposition

Algorithm 
Structure

Supporting 
Structures

Implementation 
Mechanisms

Decompose problem into pieces 
that can execute concurrently

Into tasks that can 
execute concurrently

Units that can be operated 
on (relatively) independently
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Finding Concurrency
Finding Concurrency

Dependency Analysis

Group Tasks

Order Tasks

Data Sharing

Design Evaluation

Decomposition

Data Decomposition

Task Decomposition

Algorithm 
Structure

Supporting 
Structures

Implementation 
Mechanisms

Ways to group tasks to simplify 
management of dependencies

Given a decomposition, 
ways to share data 

among tasks 
Ways to order tasks for 

correctness, other constraints

Ways to group tasks to simplify 
management of dependencies
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Algorithm Structure

Algorithm Structure

Organize by Tasks

Divide and Conquer

Task Parallelism

Finding 
Concurrency

Supporting 
Structures

Implementation 
Mechanisms

Organize by Data Decomposition

Recursive Data

Geometric Decomposition

Organize by Flow of Data

Event-Based Coordination

Pipeline

Fundamental 
organizing principleOrganize around 

concurrent tasks

Exploit potential 
concurrency in divide 

and conquer algorithms
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Algorithm Structure

Algorithm Structure

Organize by Tasks

Divide and Conquer

Task Parallelism

Finding 
Concurrency

Supporting 
Structures

Implementation 
Mechanisms

Organize by Data Decomposition

Recursive Data

Geometric Decomposition

Organize by Flow of Data

Event-Based Coordination

Pipeline

Fundamental 
organizing principle

Organize around a large 
data structure that is 
broken into “chunks”

Organize around operations 
on  recursive data structure

18



Algorithm Structure

Algorithm Structure

Organize by Tasks

Divide and Conquer

Task Parallelism

Finding 
Concurrency

Supporting 
Structures

Implementation 
Mechanisms

Organize by Data Decomposition

Recursive Data

Geometric Decomposition

Organize by Flow of Data

Event-Based Coordination

Pipeline

Fundamental 
organizing principle

Organize by sequence 
of independent stages

Organize by inherent 
communication among tasks
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Supporting Structures

Supporting Structures

Program Structures

Manager/Worker

SPMD

Algorithm 
Structure

Implementation 
Mechanisms

Finding 
Concurrency

Data Structures

Shared Queue

Shared Data

Loop Parallelism

Fork/Join

Distributed Array

Organize communication 
and sharing between UEs

Centralized control 
distributing tasks 

Translate loop 
bodies into tasks

Sets of 
dynamic tasks

Explicitly manage 
shared data

Safely share 
a queue

Manage array 
data partitioned 

among UEs
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Implementation MechanismsFinding 
Concurrency

Algorithm 
Structure

Supporting 
Structures

Implementation Mechanisms

UE Management Synchronization Communication

Manage task 
lifetimes

Enforce ordering 
constraints

Get data where it 
needs to be when UEs 
don’t share memory
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Example
• Find the value of

• Using formula  

⇡

⇡ =

Z 1

0

4

1 + x2
dx
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Discretization

h
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0 1 2 3 … i i+1 … N-1
h

Numerical Quadrature
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0 1 2 3 … i i+1 … N-1
h

Numerical Quadrature

4

1 + x(i)2
=

4

1 + (ih)2

A = h
4

1 + (ih)2
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0 1 2 3 … i i+1 … N-1
h

Numerical Quadrature

⇡ ⇡ h
N�1X

i=0

4

1 + (ih)2
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0 1 2 3 … i i+1 … N-1
h

Numerical Quadrature
double pi = 0;
for (int i = 0; i < N; ++i) {

pi += h * 4.0 / (1 + i*h*i*h);
}
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Finding Concurrency
Finding Concurrency

Dependency Analysis

Group Tasks

Order Tasks

Data Sharing

Design Evaluation

Decomposition

Data Decomposition

Task Decomposition

Algorithm 
Structure

Supporting 
Structures

Implementation 
Mechanisms 28



0 1 2 3 … i i+1 … N-1

Finding Concurrency
Partial sums are 
all independent

Can be computed 
concurrently
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0 1 2 3 … i i+1 … N-1

Finding Concurrency

⇡ ⇡ h
k<MX

k=0

2

4
i<(k+1)NX

i=kN

4

1 + (ih)2

3

5

Sum over 
partial sums Partial sum
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Finding Concurrency
Finding Concurrency

Dependency Analysis

Group Tasks

Order Tasks

Data Sharing

Design Evaluation

Decomposition

Data Decomposition

Task Decomposition

Algorithm 
Structure

Supporting 
Structures

Implementation 
Mechanisms

Decompose total 
sum into a sum of 

partial sums Each task can be 
computed 

concurrently

Need to sum up 
independent 
partial sums 
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Algorithm Structure

Algorithm Structure

Organize by Tasks

Divide and Conquer

Task Parallelism

Finding 
Concurrency

Supporting 
Structures

Implementation 
Mechanisms

Organize by Data Decomposition

Recursive Data

Geometric Decomposition

Organize by Flow of Data

Event-Based Coordination

Pipeline

Partial sums are 
independent tasks

Can be executed 
in parallel
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Supporting Structures

Supporting Structures

Program Structures

Manager/Worker

SPMD

Algorithm 
Structure

Implementation 
Mechanisms

Finding 
Concurrency

Data Structures

Shared Queue

Shared Data

Loop Parallelism

Fork/Join

Distributed Array

Translate loop 
bodies into tasks

Global sum (may or 
may not be shared)
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Implementation Mechanisms
Finding 

Concurrency

Algorithm 
Structure

Supporting 
Structures

Implementation Mechanisms

UE Management Synchronization Communication

Use C++ 
async

No ordering 
constraints

Use shared memory
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double h = 1.0 / (double) intervals;

double pi = 0.0;
for (int k = 0; k < intervals; k += blocksize) {
double partial_pi = 0.0;
for (int i = k; i < (k+blocksize); ++i) {

partial_pi += 4.0 / (1.0 + (i*h*i*h));
}
pi += h * partial_pi;

}

Sequential Implementation (Two Nested Loops)
Discretization

For each set 
of discretized 

points

Compute 
partial sum

Accumulate 
final sum
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Threads vs Tasks
void sayHello(int tnum) {

cout << "Hello World. I am thread " << tnum << endl;

}

int main() {

std::thread tid[16];

for (int i = 0; i < 16; ++i)

tid[i] = thread (sayHello, i);

for (int i = 0; i < 16; ++i)

tid[i].join();

return 0;

}

Task

Launch 
threads

Wait for tasks 
to finish

“fork”

“join”
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Threads void partial_pi(unsigned long begin, unsigned long end) {
double partial_pi = 0.0;
for (unsigned long i = begin; i < end; ++i) {
partial_pi += 4.0 / (1.0 + (i*h*i*h));

}
return partial_pi;

}

int
main(int argc, char *argv[])
{

double h = 1.0 / (double) intervals;

double pi = 0.0;
for (int k = 0; k < intervals; k += blocksize) {

pi += h * partial_pi;
}
std::cout << "pi is approximately " << pi << std::endl;

return 0;
}

Oops

Thread 
returns void

How do we update 
global total?

How do we get 
partial sums?
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Threads
void partial_pi(unsigned long begin, unsigned long end, double h, double& pi) {
double partial_pi = 0.0;
for (unsigned long i = begin; i < end; ++i) {
partial_pi += 4.0 / (1.0 + (i*h*i*h));

}
pi += h*partial_pi;

}

int
main(int argc, char *argv[])
{
std::vector<std::thread> threads;

double h = 1.0 / (double) intervals;

double pi = 0.0;
for (unsigned long k = 0; k < num_blocks; ++k) {
threads.push_back(std::thread(partial_pi,

k*blocksize, (k+1)*blocksize, h, std::ref(pi)));
}

for (unsigned long k = 0; k < num_blocks; ++k) {
threads[k].join();

}
std::cout << "pi is approximately " << pi << std::endl;

return 0;
}

Task

Assign task 
to thread
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Threads

void partial_pi(unsigned long begin, unsigned long end, double h, double& pi) {
double partial_pi = 0.0;
for (unsigned long i = begin; i < end; ++i) {
partial_pi += 4.0 / (1.0 + (i*h*i*h));

}
pi += h*partial_pi;

}

Shared 
variable

Local 
variable

Update shared 
variable
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Threads int main(int argc, char *argv[]) {
double h = 1.0 / (double) intervals;

std::vector<std::thread> threads;

double pi = 0.0;
for (unsigned long k = 0; k < num_blocks; ++k) {
threads.push_back(

std::thread(
partial_pi, k*blocksize, (k+1)*blocksize, h, std::ref(pi)));

}

for (unsigned long k = 0; k < num_blocks; ++k) {
threads[k].join();

}
std::cout << "pi is approximately " << pi << std::endl;

return 0;
}

Container for 
created threads

Thread 
constructor 

Function that 
will be the task

Arguments to 
the function

Have to explicitly 
tag this as a 

reference

We are invoking 
std::thread, not 

partial pi 40



Results

$ ./thrpi
pi is approximately 3.14159

$ ./thrpi
pi is approximately 3.14159

$ ./thrpi
pi is approximately 2.69322

Correct

Correct

Incorrect!

Exactly same 
program!

What 
happened?
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Name This Famous Couple

Clyde Barrow

Bonnie Parker
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Bonnie and Clyde Use ATMs
int bank_balance = 300;

void withdraw(const string& msg, int amount) {
int bal = bank_balance;
string out_string = msg + " withdraws " + to_string(amount) + "\n";
cout << out_string;
bank_balance = bal - amount;

}

int main() {
cout << "Starting balance is " << bank_balance << endl;

thread bonnie(withdraw, "Bonnie", 100);
thread clyde(withdraw, "Clyde", 100);

bonnie.join();
clyde.join();

cout << "Final bank balance is " << bank_balance << endl;

return 0;
}
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Withdraw Function

int bank_balance = 300;

void withdraw(const string& msg, int amount) {
int bal = bank_balance;
string out_string = msg + " withdraws " + to_string(amount) + "\n";
cout << out_string;
bank_balance = bal - amount;

}

Get balance

Compute the 
new balanceSave new 

balance
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Making Concurrent Withdrawals
int main() {

cout << "Starting balance is " << bank_balance << endl;

thread bonnie(withdraw, "Bonnie", 100);
thread clyde(withdraw, "Clyde", 100);

bonnie.join();
clyde.join();

cout << "Final bank balance is " << bank_balance << endl;

return 0;
}

Launch 
threads

Constructor

Run withdraw 
function

Wait for 
completion
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Bonnie and Clyde Use ATMs
$ ./a.out
Starting balance is 300
Bonnie withdraws 100
Clyde withdraws 100
Final bank balance is 200

Is this 
correct?
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What Happened?
void withdraw(const string& msg, int amount) {
int bal = bank_balance;
string out_s = msg + " withdraws " + to_string(amt) + "\n";

cout << out_s;
bank_balance = bal - amount;

}

void withdraw(const string& msg, int amount) {
int bal = bank_balance;
string out_s = msg + " withdraws " + to_string(amt) + "\n";

cout << out_s;
bank_balance = bal - amount;

}

Bonnie’s thread, 
bal = 300

Clyde’s thread, 
bal = 300

Context switch

Context switch

bank_balance
gets 200

bal is still 300

bal is still 300

bank_balance
gets 200

Profit!
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What Happened: Race Condition
• Final answer depends on instructions from different threads are 

interleaved with each other
• Often occurs with shared writing of shared data
• Often due to read then update shared data
• What was true at the read is not true at the update
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Critical Section Problem
int bank_balance = 300;

void withdraw(const string& msg, int amount) {
int bal = bank_balance;
string out_string = msg + " withdraws " + to_string(amount) + "\n";
cout << out_string;
bank_balance = bal - amount;

}

We want to tell 
operating system not to 
run anything else here

When some thread is executing 
this critical section, no other 

thread may execute it
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The Critical-Section Problem
• n processes all competing to use some shared data
• Each process has a code segment, called critical section, in which the 

shared data is accessed.
• Problem – ensure that when one process is executing in its critical 

section, no other process is allowed to execute in its critical section.
• What do we mean by “execute in its critical section”?
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Solution to Critical-Section Problem
• Mutual Exclusion - If process Pi is executing in its critical section, then 

no other processes can be executing in their critical sections
• Progress - If no process is executing in its critical section and there 

exist some processes that wish to enter their critical section, then the 
selection of the processes that will enter the critical section next 
cannot be postponed indefinitely
• Bounded Waiting - A bound must exist on the number of times that 

other processes are allowed to enter their critical sections after a 
process has made a request to enter its critical section and before 
that request is granted
• Assume that each process executes at a nonzero speed 
• No assumption concerning relative speed of the N processes
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Critical Section Problem
int bank_balance = 300;

void withdraw(const string& msg, int amount) {
int bal = bank_balance;
string out_string = msg + " withdraws " + to_string(amount) + "\n";
cout << out_string;
bank_balance = bal - amount;

}

This is a critical section Let’s just think about 
mutual exclusion for now
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Critical Section Problem
bool lock = false;

int bank_balance = 300;

void withdraw(const string& msg, int amount) {
while (lock == true)
;

lock = true;

int bal = bank_balance;
string out_string = msg + " withdraws " + to_string(amount) + "\n";
cout << out_string;
bank_balance = bal - amount;

lock = false;
}

Test if another 
thread is holding 

the lock

Spin if it is

Fall through when lock == false

Take the lock

Execute 
critical 
section

Release lock

53



Aside
bool lock = false;

int bank_balance = 300;

void withdraw(const string& msg, int amount) {

string out_string = msg + " withdraws " + to_string(amount) + "\n";
cout << out_string;
bank_balance -= amount;

}

Still a race

54



Aside
bool lock = false;

int bank_balance = 300;

void withdraw(const string& msg, int amount) {

string out_string = msg + " withdraws " + to_string(amount) + "\n";
cout << out_string;
bank_balance = bank_balance - amount;

}

Still a race Read Compute

Then write
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bool lock = false;

int bank_balance = 300;

void withdraw(const string& msg, int amount) {

string out_string = msg + " withdraws " + to_string(amount) + "\n";
cout << out_string;

bank_balance = bank_balance - amount;

}

Critical Section Problem

Critical 
section
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bool lock = false;

int bank_balance = 300;

void withdraw(const string& msg, int amount) {

string out_string = msg + " withdraws " + to_string(amount) + "\n";
cout << out_string;

while (lock == true)
;

lock = true;

bank_balance = bank_balance - amount;

lock = false;
}

Solution (?) Test if another 
thread is holding 

the lock

Spin if it is

Fall through when lock == false

Take the lock

Execute 
critical 
section

Release lock
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bool lock = false;

int bank_balance = 300;

void withdraw(const string& msg, int amount) {

string out_string = msg + " withdraws " + to_string(amount) + "\n";
cout << out_string;

while (lock == true)
;

lock = true;

bank_balance = bank_balance - amount;

lock = false;
}

Solution (?) Test if another 
thread is holding 

the lock

Spin if it is

Fall through when lock == false

Common 
pattern (when 

correct)

Take the lock

Lock might be 
taken between the 

test and the set We’ve traded one 
critical section 

problem for another
58



Synchronization Hardware
• Many systems provide hardware support for critical section code
• Uniprocessors – could disable interrupts
• Currently running code would execute without preemption
• Generally too inefficient on multiprocessor systems

• Operating systems using this not broadly scalable

• Modern machines provide special atomic hardware instructions
• Atomic = non-interruptable

• Either test memory word and set value
• Or swap contents of two memory words
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Test and Set
bool TestAndSet (bool& target)
{

bool rv = target;
target = TRUE;
return rv:

}

bool TestAndSet (bool *target)
{

bool rv = *target;
*target = TRUE;
return rv:

}

These are the 
semantics, not the 

implementation

Implemented in 
hardware as an 

invisible instruction 
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Compare And Swap
void CompareAndSwap (bool *a, bool *b)
{

bool temp = *a;
*a = *b;
*b = temp:

}

void CompareAndSwap (bool& a, bool& b)
{

bool temp = a;
a = b;
b = temp:

}

These are the 
semantics, not the 

implementation

Implemented in 
hardware as an 

invisible instruction 
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Correct Withdraw
int bank_balance = 300;
bool lock = false;

void withdraw(const string& msg, int amount) {
string out_s = msg + " withdraws " + to_string(amt) + "\n";
cout << out_s;

while (TestAndSet(lock) == true)
;

bank_balance -= amount;

lock = false;
}

Spin while the value is 
true (another thread 

holds the lock)

Under what 
condition will 

we fall through?

What is the 
state of the 

lock? Release the lock
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Correct Withdraw
int bank_balance = 300;
bool lock = false;

void withdraw(const string& msg, int amount) {
string out_s = msg + " withdraws " + to_string(amt) + "\n";
cout << out_s;

while (TestAndSet(lock) == true)
;

bank_balance -= amount;

lock = false;
}

”Spin lock” 
(common pattern)

What is the 
CPU doing?

How is it 
affecting other 

threads?
Is this a good 
programming 
abstraction?
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Instructions

Data

Fetch

Load/Store

... ...
Clock

cycle
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Multitasking on Multicore

In 1/8 the 
time (?)

Time

Need enough 
cores (8)

Work needs to 
be balanced

oops

Parallel computation isn’t 
done until all cores are done

Nonetheless, this is the 
essence of parallel computing

Not the same as 
concurrent
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Numerical Quadrature Task
double partial_pi(unsigned long begin, unsigned long end, double h) {

double partial_pi = 0.0;
for (unsigned long i = begin; i < end; ++i) {
partial_pi += 4.0 / (1.0 + (i*h*i*h));

}
return partial_pi;

}

Nothing remarkable 
about this function

Nothing remarkable 
about this function
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$ time ./taskpi 500000000 1
pi is approximately 3.14159
2.006u 0.006s 0:02.01 99.5%

$ time ./taskpi 500000000 2
pi is approximately 3.14159
1.895u 0.008s 0:00.95 198.9%

$ time ./taskpi 500000000 4
pi is approximately 3.14159
2.020u 0.007s 0:00.51 396.0%

Performance
Elapsed time

CPU time OS time

Utilization

Elapsed time

CPU time OS time

Utilization

Elapsed time

CPU time OS time

Utilization
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$ time ./taskpi 500000000 1
pi is approximately 3.14159
2.006u 0.006s 0:02.01 99.5%

$ time ./taskpi 500000000 2
pi is approximately 3.14159
1.895u 0.008s 0:00.95 198.9%

$ time ./taskpi 500000000 4
pi is approximately 3.14159
2.020u 0.007s 0:00.51 396.0%

Performance
$ time ./taskpi 500000000 8
pi is approximately 3.14159
3.669u 0.008s 0:00.48 762.5%

$ time ./taskpi 500000000 16
pi is approximately 3.14159
3.659u 0.009s 0:00.48 760.4%

$ time ./taskpi 500000000 50000
pi is approximately 3.14159
2.963u 1.194s 0:00.92 451.0%

Elapsed time

CPU time

OS time
Utilization

Elapsed time

CPU time

OS time
Utilization

Elapsed time

CPU time

OS time
Utilization

Too many 
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Parallel Speedup, Parallel Efficiency

S(p) =
T (n, 1)

T (n, p)

Speedup on p 
processing units

Time to run problem 
size n on one PU

Time to run problem 
size n on p PUs

Efficiency on p 
processing units

Ideal parallel 
execution time

Divided by 
actual parallel 
execution time

E(p) =
T (n, 1)/p

T (n, p)
=

T (n, 1)/T (n, p)

p
=

S(p)

p

68



Scaling Superlinear
(fishy)

Sublinear (typical) 

Linear (ideal) 
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Name This Famous Person
"Validity of the single processor approach to 

achieving large-scale computing capabilities,” 
AFIPS Conference Proceedings (30): 483–485, 
1967.

Gene Amdahl (1922-2015)

Amdahl’s Law
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Limits to Parallelism (Amdahls’s Law)
T (n, 1)

↵T (n, 1) (1� ↵)T (n, 1)

Sequential 
execution timeInherently 

sequential

Perfectly 
parallelizable

T (n, 1) = ↵T (n, 1) + (1� ↵)T (n, 1)

Inherently 
sequential

Perfectly 
parallelizable

T (n, p) = ↵T (n, 1) + 1
p (1� ↵)T (n, 1)

= T (n, 1)(↵+ 1
p (1� ↵)) Ideal speedup (for 

parallelizable portion)Sequential 
portion
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Limits to Parallelism (Amdahls’s Law)
T (n, 1)

↵T (n, 1) (1� ↵)T (n, 1)

Sequential 
execution timeInherently 

sequential

Perfectly 
parallelizableS(p) =

T (n, 1)

T (n, p)
=

T (n, 1)

T (n, 1)[↵+ 1
p (1� ↵)]

=
1

↵+ 1
p (1� ↵)

 1

↵
lim
p!1

S(p) =
1

↵

Speedup
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↵T (n, 1) (1� ↵)T (n, 1)

T (n, p)|p!1

T (n, 1)

Limits to Parallelism (Amdahls’s Law)
Inherently 
sequential

Perfectly 
parallelizable

lim
p!1

S(p) =
1

↵

S(p) =
T (n, 1)

T (n, p)

Speedup is the 
ratio of thisTo this
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Limits to Parallelism (Amdahl’s Law)

Asymptotically 
approaches 20

↵ = 0.05
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Limits to Parallelism 

↵ = 0.01

Asymptotically 
approaches 100

On 1024 cores

Not scalable

No matter how 
many cores added

Exascale machines might 
have millions of cores
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There are no Limits (Gustafson’s Law)
• Doing the same problem faster and faster is not how we use 

parallel computers
• Rather, we solve bigger and more difficult problems
• I.e., the amount of parallelizable work grows

CC BY-SA 3.0, https://en.wikipedia.org/w/index.php?curid=17451775

↵T (n, 1) p(1� ↵)T (n, 1)

T (n, p) = T (n, 1)
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S(p) = ↵T (n,1)+p(1�↵)T (n,1)
T (n,p) = ↵T (n,1)+p(1�↵)T (n,1)

T (n,1) = ↵+ p(1� ↵)

E(p) = S(p)
p

↵T (n, 1) p(1� ↵)T (n, 1)

T (n, p) = T (n, 1)

There are no Limits (Gustafson’s Law) Perfectly 
parallelizable

Parallel 
performance Ratio of non speed 

up to speed up

lim
p!1

E(p) = (1� ↵)
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Two Types of Scaling Ideal

Strong scaling
Amdahl

Weak scaling 
Gustafson

Not scalable

Scalable
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Stay Tuned
• C++ threads
• C++ async()
• C++ atomics
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Thank you!
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