AMATH 483/583
High Performance Scientific Computing

Lecture 6:
High Performance in Hierarchical Memory

Andrew Lumsdaine

Northwest Institute for Advanced Computing
Pacific Northwest National Laboratory
University of Washington

Seattle, WA

Overview

« “PDP-11" machine model
* Pipelining, pipeline stalls
* Hierarchical memory

« Timing and benchmarking
« Compiler optimizations
 Tiling

« Blocking

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : ,?M,,,MR . ' _UNIVERSITYo f
University of Washington by Andrew Lumsdaine ! Sl b

Microprocessors

« Basic operation: read and execute program instructions stored in
memory

« Fundamental performance / efficiency metric: cycles per instruction
(CPI) also FLC Instructions

can only be i Fetch
- N
run in CPU I~ — <n%,tructions |
Transitions 4 cpu Memory
Clock — —
move data |—" — —
oo cpy | UL A/ - “‘m N\
throug > | VAR Load/Store Program
cycle [Data can only instructions
be operated and data

on in CPU

NORTHWEST INSTITUTE for ADVANCED COMPUTING ~ A
Paciic povitwest -

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : Pl ot I aicte
University of Washington by Andrew Lumsdaine ! Sl b

UNIVERSITY o

WASHINGTON

Performance-Oriented Architecture Features

« Execution Pipeline

— Stages of functionality to process issued instructions

— Hazards are conflicts with continued execution

— Forwarding supports closely associated operations exhibiting precedence constraints
* Qut of Order Execution

— Uses reservation stations

— Hides some core latencies and provide fine grain asynchronous operation supporting
concurrency

 Branch Prediction

— Permits computation to proceed at a conditional branch point prior to resolving
predicate value

— Overlaps follow-on computation with predicate resolution
— Requires roll-back or equivalent to correct false guesses
— Sometimes follows both paths, and several deep

NORTHWEST INSTITUTE for ADVANCED COMPUTING ~ W
Pacific Northwest :

AMATH 483/583 High-Performance Scientific Computing Spring 2019 P
University of Washington by Andrew Lumsdaine 1 g -

UNIVERSITY o

of
WASHINGTON

Skylake

fem Management
-~ =
& Execution

Scheduling ~
Beticemeit

AS

Front End Instruction .
CacheTag| L1 Instruction Cache
HOP Cache 32KiB 8-Way Instruction
Tag TLB
16 Bytes/cycle
Branch
Predictor Instruction Fetch & PreDecode
(BPU) (16 B window)
MopP MoP MoP MoP
Instruction Queue
(50, 2x25 entries)
MOP MOP MOP MOP MOP

MicroCode 5-Way Decode

Seq;g;cer Complex |[Simple |[Simple |[Simple |[Simple

(MS ROM) Decoder || Decoder || Decoder || Decoder || Decoder

1-4 HOPs HOP HOP HOP poP
4 poPs
5 uoPs
Decoded Stream Buffer (DSB)
(OP Cache) 6 poPs
(1.5k LOPs; 8-Way)

(64 B window) MUX

‘ e
)

Allocation Queue (IDQ) (128, 2x64 HOPs)

MOP MOP HOP MOP MOP MOP | Branch Order Buffer
Reglster Allas Table (RAT) q/lok (BOB) (48-entry)

Execution Engine

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scien
University of Washington by Ar

256bit/cycle

Load
a =
g = Rename / Allocate / Retlr_ement | Ones Idioms | | el D |
3 ReOrder Buffer (224 entries)
3
]
I uop noP uop noP uop noP uop noP
8 Scheduler
3 Ineger Physical esster il | e Reservaion staton (Rs) | Ve<tor Physica Resister ile
8 (97 entries)
[Porto | [Port1 | [Port5] [Port6 | [Port2 | [Port3 | [Portd4 | [Port7 |
noP noP noP uop uoP uoP uoP uoP

EUs

Store Buffer & Forwarding
(56 entries)

328Jeycle

L1 Data Cache
32KiB 8-Way

32BJeycle

Load Buffer
(72 entries)

Data TLB

328Jeycle

Memory Subsystem

o12hd/av9

g11S payiun

Aep-t G195
ayaed 7]

32B/cycle
To L3

/

s12h2/av9

W

UNIVERSITY of
WASHINGTON

ABORATORY

by Bavene

Microprocessors

« Basic operation: read and execute program instructions stored in
memory

« Fundamental performance / efficiency metric: cycles per instruction
(CPI) also FLC Instructions

can only be i Fetch
- N
run in CPU I~ — <n%,tructions |
Transitions 4 cpu Memory
Clock — —
move data |—" — —
oo cpy | UL A/ - “‘m N\
throug > | VAR Load/Store Program
cycle [Data can only instructions
be operated and data

on in CPU

NORTHWEST INSTITUTE for ADVANCED COMPUTING ~ A
Paciic povitwest -

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : Pl ot I aicte
University of Washington by Andrew Lumsdaine ! Sl b

UNIVERSITY o

WASHINGTON

Processor Core Instruction Handling

* A single instruction may require multiple steps from fetch to

completion

Clock

—»| |e
cycle

Program
instructions

. CPU Sends
Instruction
. address to
is returned
memory
L L] AW
} \ Fetch 11
Fetch - 12
Decode — 13
R Read — D1
Execute — Do
R erite B Load/Store

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Baese
for the LS. Department of Enen

Program
Data

IIIIIIIIIII

Processor Core Instruction Handling

* A single instruction may require multiple steps from fetch to

completion Instruction
is fetched
LI/
—+ / Fetch I
| [Fen [JF 2
. Decode — I3
E : Read E .l '. D1
Clock — xecgte [b2
- A] RWI”te [Load/Store
> | [TTTTTTTT]
cycle

NORTHWEST INSTITUTE for ADVANCED COMPUTING ¢
Pacific Northwest

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : Pty Operatod by Baese ' _UNIVERSITYo f
University of Washington by Andrew Lumsdaine / s

Processor Core Instruction Handling

* A single instruction may require multiple steps from fetch to

completion _
Instruction
is decoded
LLL Ll
} / Fetch 11
— Fetch — 12
: Decode 1 : 13
E : Read E D1
Clock —] Xecfjte - “‘ ' D2
o LML -] RWIrlte B Load/Store
> e TTTTTTTT]
cycle

NORTHWEST INSTITUTE for ADVANCED COMPUTING ¢
Pacific Northwest

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : Pty Operatod by Baese ' _UNIVERSITYo f
University of Washington by Andrew Lumsdaine / s

Processor Core Instruction Handling

* A single instruction may require multiple steps from fetch to

completion Registers
are read
LLr it /
} Fetch 11
- Fetch E 12
— Decode — 13
_ / =
- : Read 1 = D7
Clock — Xecfjte - “‘ ' D2
o LML -] RWIrlte B Load/Store
> e TTTTTTTT]
cycle

NORTHWEST INSTITUTE for ADVANCED COMPUTING ¢
Pacific Northwest

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : Pty Operatod by Baese ' _UNIVERSITYo f
University of Washington by Andrew Lumsdaine / s

Processor Core Instruction Handling

* A single instruction may require multiple steps from fetch to

completion
Ll
} Fetch 11
— Fetch u 12
: Decode : 13
E : Read - E D1
Clock —] Xecf“e\ - “‘ ' D2
o LML -] RWIrlte B Load/Store
™~ TTTTTTTTTT S _
cycle Instruction
is executed

NORTHWEST INSTITUTE for ADVANCED COMPUTING ¢
Pacific Northwest

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : g ' _UNIVERSITYo f
University of Washington by Andrew Lumsdaine / s

Processor Core Instruction Handling

* A single instruction may require multiple steps from fetch to

completion
LLr it
} Fetch 1
— Fetch u 12
— Decode — 13
— R Read —
1| [Beou - 4
Clock — XeC%J e - D2
o LML -] RWIrlte Q B Load/Store
> e TTTTTTTT]

Registers
are written

NORTHWEST INSTITUTE for ADVANCED COMPUTING ¢
Pacific Northwest

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : Pty Operatod by Baese ' _UNIVERSITYo f
University of Washington by Andrew Lumsdaine / s

Processor Core Instruction Handling

* A single instruction may require multiple steps from fetch to

completion
LLr it
} Fetch 11
- Fetch u 12
— Decode — 13
— | [RRead =
= d eat - D1
Clock — XeC%J e - D2
o LML -] RWIrlte B Load/Store
> e TTTTTTTT]

Function is
retired

NORTHWEST INSTITUTE for ADVANCED COMPUTING ¢
Pacific Northwest

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : Pty Operatod by Baese ' _UNIVERSITYo f
University of Washington by Andrew Lumsdaine / s

Processor Core Instruction Handling

* A single instruction may require multiple steps from fetch to

completion But we can’t make Let’s use
o] 4id one instruction 5X them in
ke ot one [~ 2SSk ryrrr) —paralel
take for one
instruction \\ v / B Feteh I
- Fetch — 2
5 CP] — Decode — I3
— R Read —
- = D1
Clock = Exec.ute — Do
o LML R Write B Load/Store
> e RRRRRRRRAI
cycle

These stages can

process in parallel
|

” AMATH 483/583 High-Performance Scientific Computing Spring 2019 Sl ' universiTyo
University of Washington by Andrew Lumsdaine / prest e

Processor Core Instruction Handling

« By pipelining, multiple instructions can be executed at each clock

cycle Fetch first
« Form of instruction-level parallelism (ILE instruction

—

AN

} / Fetch I
- Fetch 1 u 12
— Decode — 13
— R Read —
1| [Een - !
Clock — XeC%J e - D2
o LML -] R erlte Load/Store
> e TTTTTTTT]
cycle

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : ,?M,,,MR . ' _UNIVERSITYo f
University of Washington by Andrew Lumsdaine ! g -

Processor Core Instruction Handling

« By pipelining, multiple instructions can be executed at each clock
cycle

« Form of instruction-level parallelism (

When first instruction is

ILP) in decode, fetch second

N\

} y Fetch 1

1| [T eAr 2

. Decode I — I3

E : Read \E D1

Clock | [Eecute \ “‘Eﬁ‘ D2
o LML -] RWIrlte First instruction |

> |- TTTTTTTT] moves to
cycle
decode

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : : e O ' _UNIVERSITYo f
University of Washington by Andrew Lumsdaine / sl s

Processor Core Instruction Handling

« By pipelining, multiple instructions can be executed at each clock

cycle .
y _ _ . Third is
* Form of instruction-level parallelism fetched
Second LLLLLLLLLL /
moves to . ; / B Fetch 1
— Fetch 13 — - 12
decode = nsiruciions | .
— R Read 1 —
_ . — D1
Clock O] | [Execute — “‘Eﬁ‘ D2
o ML -] RWIrlte B | nad/Store
> |- '
Syclo [TTTTTTTT] First moves
to Read

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : : e O ' _UNIVERSITYo f
University of Washington by Andrew Lumsdaine / sl s

Processor Core Instruction Handling

« By pipelining, multiple instructions can be executed at each clock

cycle | | | Fourth is
* Form of instruction-level parallelism fetched

I I I I

} / Fetch 11

— Fetch 14 u 12

: Decode 13 : 13

|| = < |

Clock — XeC%J e - D2
o LML - o RWIrlte B Load/Store

> | TTTTTTTT Previous
cycle . .
Instructions

move along

NORTHWEST INSTITUTE for ADVANCED COMPUTING
P e v

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : Pty Operatod by Baese ' _UNIVERSITYo f
University of Washington by Andrew Lumsdaine ! s

Processor Core Instruction Handling

« By pipelining, multiple instructions can be executed at each clock

cycle e
y _ _ _ Fifth is
» Form of instruction-level parallelism| t.t hed
LIl
} / Fetch 1
— Fetch 15 u -M 12
E Decode | 14 E 13
— R Read 13 —
Clock E Execgte 12 E B;
o LML - RWIrlte \\|1 B Load/Store
> e mrrrrrrny Previous
cycle . .
Instructions

move along

NORTHWEST INSTITUTE for ADVANCED COMPUTING
P e v

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : Pty Operatod by Baese ' _UNIVERSITYo f
University of Washington by Andrew Lumsdaine ! s

Processor Core Instruction Handling

« By pipelining, multiple instructions can be executed at each clock

cycle

« Form of instruction-level parallelism (

Clock

—»| |e
cycle

NORTHWEST INSTITUTE for ADVANCED COMPUTING

Fetch 16

Decode 15

R Read 14

Execute I3

R Write 12
|

AMATH 483/583 High-Performan

ce Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

\

ILP)| Andsoon

Fetch 1
2
13
D1
D2
Load/Store

nnnnnnnnnnnn

Processor Core Instruction Handling

« By pipelining, multiple instructions can be executed at each clock
cycle

« Form of instruction-level parallelism (ILP)

} Fetch 11
- Fetch |7 u 12
— Decode 16 — 13
— R Read 15 —
1| [Bewe] 1w |F D!
Clock —] xec%J © - D2
o ML RWIr'te I3 Load/Store
> e TTTTTTTT]
cycle

NORTHWEST INSTITUTE for ADVANCED COMPUTING
P e v

AMATH 483/583 High-Performance Scientific Computing Spring 2019 g [_UNIVERSITY o f
University of Washington by Andrew Lumsdaine 3 g - WASHINGEON

Pipeline Stall

« By pipelining, multiple instructions can be executed at each clock
cycle

| | _ Fourth is
* Form of instruction-level parallelism fetched

Lttt

} / Fetch 11
- Fetch 14 u 12
: Decode 13 : 13
|| = < |
Clock — XeC%J e - D2

o LML -] RWIrlte B Load/Store

> e |||||||||\Whatiffirstis

cycle]
a jump or
branch

NORTHWEST INSTITUTE for ADVANCED COMPUTING
P e v

AMATH 483/583 High-Performance Scientific Computing Spring 2019 g [_UNIVERSITY o f
University of Washington by Andrew Lumsdaine 3 e A WASHINGEON

Pipeline Stall

« By pipelining, multiple instructions can be executed at each clock
cycle

| | _ Fourth is
* Form of instruction-level parallelism fetched

Lttt

} / Fetch 11
- Fetch 14 u 12
: Decode 13 : 13
|| = < |
Clock — XeC%J e - D2

o LML -] RWIrlte B Load/Store

> e |||||||||\Whatiffirstis

cycle]
a jump or
branch

NORTHWEST INSTITUTE for ADVANCED COMPUTING
P e v

AMATH 483/583 High-Performance Scientific Computing Spring 2019 g [_UNIVERSITY o f
University of Washington by Andrew Lumsdaine 3 e A WASHINGEON

Pipeline Stall

« A single instruction may require multiple steps from fetch to

completion Start fetching
from where we
branch to
LLL Ll \
} Fetch 11
E Fetch E 12
] Decode — 13
— R Read —
— — D1
Clock - Execgte — =
o LML -] RWIrlte Q B Load/Store
> - MTTTTTTTTT We need to

discard the other
instructions

Pacific Northwest W
NATIONAL LABORATORY J

UNIVERSITY of
WASHINGTON

NORTHWEST INSTITUTE for ADVANCED COMPUTING

24 AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Proxly Operated by Bavese
for the LS. Department of Enen

Branch Prediction

 Load the instructions we think will be branched to

There are two When a branch
possibilities for what instruction enters
next instruction will be o / the pipeline
}\ / Fetch T
] Fetch T E 12
] Decode — 13
E :Read E 51
Clock _ xecute — “‘Eﬁ‘ D2
o LML -] RWIrlte B Load/Store
> e MTTTTTTTTT
cycle

NORTHWEST INSTITUTE for ADVANCED COMPUTING

o T AT ! 27
igh- ientifi i i ERSITY o
AMATH 483/5.83 ngh Performance Scientific Computmg Spring 2019 : Pty Ot e UANg\lI‘{INIGT'IY'O{\I
University of Washington by Andrew Lumsdaine)

Branch Prediction

 Load the instructions we think will be branched to

This is the instruction the
CPU predicts will branch to

N\

} / Fetch 1

— Fetch 127 E 12

. Decode I — I3

E : Read \E D1

Clock | [Eecute \ “‘Eﬁ‘ D2
o LML - o RWIrlte First instruction [

> e TTTTTTTT] moves to
cycle
decode

NORTHWEST INSTITUTE for ADVANCED COMPUTING

G NATIONAL L. AT J %
i - i ifi i i UNIVERSITY of
AMATH 483/5.83 ngh Performance Scientific Computmg Spring 2019 : Pty Ot e S
University of Washington by Andrew Lumsdaine)

Branch Prediction

 Load the instructions we think will be branched to

* And their successors Third is
fetched
Second LLLLLLLLLL /
moves to . ; / B Fetch 1
— Fetch 13 — - 12
decode = nsiruciions | .
— R Read 1 —
- . — D1
Clock O] | [Execute — “‘Eﬁ‘ D2
o ML -] RWIrlte B | nad/Stare
> | '
Syclo [TTTTTTTT] First moves
to Read

NORTHWEST INSTITUTE for ADVANCED COMPUTING

G NATIONAL RATT J %
i - i ifi i i UNIVERSITY of
AMATH 483/5.83 ngh Performance Scientific Computmg Spring 2019 : Pty Ot e S
University of Washington by Andrew Lumsdaine)

Instruction Pipelining

 When instruction is executed we were either right
— Continue the pipeline

Fourth is
« Orwrong fetched
— Flush the pipeline LLLLLLLLLL

—+ / Fetch 1
- Fetch 4 | = 12
— Decode | 13 | — 13
— R Read 12 — D1
Clock - Execgte 11 — D2

o LML - N RWIrlte B Load/Store

> | TTTTTTTT Previous

cycle _ _
Instructions

move along '
NORTHWEST INSTITUTE for ADVANCED COMPUTING _ \gh?:’/ w

28 AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

Proxly Operated by Bavese
for the LS. Department of Enen

Pipeline Stall from Mis-Predict

« A single instruction may require multiple steps from fetch to

completion Start fetching
from where we
branch to
LLL Ll \
} Fetch 11
E Fetch E 12
] Decode — 13
— R Read —
— — D1
Clock - Execgte — =
o LML -] RWIrlte Q B Load/Store
> - MTTTTTTTTT We need to

discard the other

instructions
NORTHWEST INSTITUTE for ADVANCED COMPUTING
Pacific Northwest

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : Pty Operatod by Baese ' _UNIVERSITYo f
University of Washington by Andrew Lumsdaine ! s

Performance-Oriented Architecture Features

« Execution Pipeline

— Stages of functionality to process issued instructions

— Hazards are conflicts with continued execution

— Forwarding supports closely associated operations exhibiting precedence constraints
* Qut of Order Execution

— Uses reservation stations

— Hides some core latencies and provide fine grain asynchronous operation supporting
concurrency

 Branch Prediction

— Permits computation to proceed at a conditional branch point prior to resolving
predicate value

— Overlaps follow-on computation with predicate resolution
— Requires roll-back or equivalent to correct false guesses
— Sometimes follows both paths, and several deep

NORTHWEST INSTITUTE for ADVANCED COMPUTING ~ W
Pacific Northwest :

UNIVERSITY o

of
WASHINGTON

- AMATH 483/583 High-Performance Scientific Computing Spring 2019 R
1 for the ULS. Department of Energy

University of Washington by Andrew Lumsdaine

Pipeline Stall

« By pipelining, multiple instructions can be executed at each clock
cycle

| | _ Fourth is
* Form of instruction-level parallelism fetched

Lttt

} / Fetch 11
- Fetch 14 u 12
: Decode 13 : 13
|| = < |
Clock — XeC%J e - D2

o LML -] RWIrlte B Load/Store

> e |||||||||\Whatiffirstis

cycle]
a jump or
branch

NORTHWEST INSTITUTE for ADVANCED COMPUTING
P e v

AMATH 483/583 High-Performance Scientific Computing Spring 2019 g [_UNIVERSITY o f
University of Washington by Andrew Lumsdaine 3 e A WASHINGEON

Pipeline Stall

« A single instruction may require multiple steps from fetch to

completion Start fetching
from where we
branch to
LLL Ll \
} Fetch 11
E Fetch E 12
] Decode — 13
— R Read —
— — D1
Clock - Execgte — =
o LML -] RWIrlte Q B Load/Store
> - MTTTTTTTTT We need to

discard the other
instructions

Pacific Northwest W
NATIONAL LABORATORY J

UNIVERSITY of
WASHINGTON

NORTHWEST INSTITUTE for ADVANCED COMPUTING

32 AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Proxly Operated by Bavese
for the LS. Department of Enen

Compiling functions

#include <iostream>
#include <cmath>

double sqrt583(double z) {
double x = 1.0;

for (size_t 1 = 0; i < 32; ++i) {
double dx = (x*x-2z) / (2.0%x)
x += dx;
if (abs(dx) < 1.e-9) break;

.
b

$ c++ main.cpp
$./a.out
1.4142

Compile main.cpp

Translate it into a

+

/
$ c++ main.cpp

~| language the cpu can run

|

return x;

}

The executable (program

that the cpu can run)

int main () {

$./a.out

std::cout << sqrtb83(2.0) << std::endl;

return O;
+

University of Washington by Andrew Lumsdaine

ance Scientific Computing Spring 2019

I/
AN

But what is this really?

IIIIIIIIIII
WASHINGTON

Compiled language

main

#include <iostream>
#include <cmath>

double sqrt583(double z) {
double x = 1.0;

for (size_t i = 0; i < 32; ++i) {

double dx = - (x*x-z) / (2.0%x) ;
x += dx;
if (abs(dx) < 1.e-9) break;

+

return x;

}

int main () {

std: :cout

return O;

}

<< sqrtb83(2.0) << std::endl;

$ c++ main.cpp

sqrt583

ance Scientific Computing Spring 2019

University of Washington by Andrew Lumsdaine

subq $64,

movsd LCPI1_0(),
mov 1 $0, -36()
movsd , —48()
movsd —48(),

callg __Z7sqrt583d
movq , —24()
mov(q , —32()
movq -24(),

subq *-32()

movsd LCPIO_O(),
movsd , —16()
movsd , —24()
movq $0, -32()
cmpq $32, -32()
jae LBBO_6

movsd LCPI@_1(),
movsd LCPIQ_3(),
movabsq $-9223372036854,
movsd —24(),

Pacific N
NAT

orthwest
IONAL LABORATORY

W

UNIVERSITY of
WASHINGTON

o H V24 .
mailn’ entr main | subg $64,
Fetch Decode Execute enty | — TS
: : point oVl 0, —36(-07)
CPU instructions are movsd 28000
. “" - movsd —48()y
stored in memory [—_ main A ot —Z7sgrosesa
TN function e
movq , =32()
| movq —24(),
— + — subq *-32()
— Fetch l6 = Instructions SEEE
] : - :
: Decode !5 :: qu rt583” — s(q rt588% | movsd LCPIO_O(),
| R Read I4 — . movsd , —16()
- . = entry point movsd , =24(%rbp)
= Execute | I3 F;: | | TS0, 32000
— R Write | g — < Data > cnpg $32, -32(%rbp)
- = — jae LBBO_6
+ movsd LCPI@_1(),
W " ” movsd LCPIOQ_3(),
Sqrt583 movabsq $-9223372036854,
funCtlon movsd —24(),

NORTHWEST INSTITUTE for ADVANCED COMPUTING W(/ / W
PacifigNorthwest s

IONAL LABORATORY

igh- iantifi i i g [UNIVERSITY of
AMATH 483/5.83 ngh Performance Scientific Computmg Spring 2019 : Pty Ot e S
University of Washington by Andrew Lumsdaine)

Function Call e
Call sqrt583 movsd LCPI1_0(%rip),
mov 1 $0, -36()
movsd , —48()
”main” movsd —48()y
- allg __Z7sqrt583d
LIt LLL function | fovq__ wrax, “24iArbp)
movq , =32()
| + movq —24(),
— _ — . subq *-32()
= Fetch l6 — Instructions SRR
— i —
- Decode 5 ;: sqrt588% | movsd LCPI0_0(),
— R Read i4 — movsd , —-16()
-l . = movsd , —24()
: Execute 13 :: movq $0, -32()
— R Write | g — cnpq $32, —32(%bp)
— + -~ - jae LBBO_6
movsd LCPI@_1(),
d LCPIO_3()
W o ” movs _ ,
Sqrt583 movabsq $-9223372036854,
functlon movsd —24(),

NORTHWEST INSTITUTE for ADVANCED COMPUTING \vf’/ / w
PacifigNonhvvengm /s

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : ; 3 i #X%‘;ﬁ:g]’{a&
University of Washington by Andrew Lumsdaine / iaie i

Function Call mair T ses,

movsd LCPI1_0(),
mov L $0, -36()

AN Tovsd a8)

movsd -48(),

+ callqg _ Z7sqrt583d
‘ movq , —24()

— Fetch |subg < Instructions movg , —32(%1bp)
—_ — movq -24(),
— Decode — subq #-32(%rbp)
— R Read =
- = sqrtS83 [ovsd Lcpto ot),
— Execute S~ movsd , —16()
-~ . = movsd , —24()
: R erte — Data movq $0, -32()
+ - cmpq $32, —32()
T [Gee LBBO_6
movsd LCPIOQ_1(),
| | | | | | | | | | | movsd LCPIQ_3(),
movabsq $-9223372036854,
movsd —24(),

NORTHWEST INSTITUTE for ADVANCED COMPUTING i ~ W
e

e RY
R . - . . : UNIVERSITY of
AMATH 483/583 High-Performance Scientific Computing Spring 2019 : iy © pacse WASHINGTON

37 University of Washington by Andrew Lumsdaine

Function Call mair T ses,

movsd LCPI1_0(),
mov L $0, -36()

AN Tovsd a8)

movsd -48(),

+ callqg _ Z7sqrt583d
‘ movq , —24()

— Fetch |movsdT F Instructions movg , —32(%rbp)
—_ — movq -24(),
- DeCOde Squ = subq *-32()
— R Read —
— — sart58% ovsa LcpTo ol i),
— Execute = movsd , —16()
-~ . = movsd , —24()
: R erte — Data movq $0, -32()
+ - cmpq $32, —32()
T [Gee LBBO_6
movsd LCPIQ 1(),
| | | | | | | | | | | movsd LCPIO_3(),
movabsq $-9223372036854,
movsd —24(),

NORTHWEST INSTITUTE for ADVANCED COMPUTING i ~ W
e

e RY
R . - . . : UNIVERSITY of
AMATH 483/583 High-Performance Scientific Computing Spring 2019 : iy © pacse WASHINGTON

38 University of Washington by Andrew Lumsdaine

Function Call mair T ses,

movsd LCPI1_0(),
mov L $0, -36()

AN Tovsd a8)

movsd -48(),

+ callqg _ Z7sqrt583d
‘ movq , —24()

— Fetch |movl 7 B Instructions movq , —32(%bp)
—_ — movq -24(),
— Decode |movsd — subqg _ #-32(%rbp)
— R Read |subqg —
- = sqrtS83 [ovsd Lcpto ot),
— Execute S~ movsd , —16()
-~ . = movsd , —24()
: R erte — Data movq $0, -32()
+ - cmpq $32, —32()
T [Gee LBBO_6
movsd LCPIOQ_1(),
| | | | | | | | | | | movsd LCPIQ_3(),
movabsq $-9223372036854,
movsd —24(),

NORTHWEST INSTITUTE for ADVANCED COMPUTING i ~ W
e

e RY
R . - . . : UNIVERSITY of
AMATH 483/583 High-Performance Scientific Computing Spring 2019 : iy © pacse WASHINGTON

39 University of Washington by Andrew Lumsdaine

Function Call mair T ses,

movsd LCPI1_0(),
mov L $0, -36()

AN Toved A8
. movsd —48(),
+ callqg _ Z7sqrt583d
‘ movq , —24()
Fetch |movsd Instructions movg . —32(%10p)
movq -24(),

Decode |movl — subq #-32(%rbp)
R Read |movsd

= sqrt58% [ovsa Lepte o),
Execute |[subg = movsd . —16(=bp)
\ — movsd , —24()

R erte — Data movq $0, -32()

+ - cmpgq $32, -32()

T [Gee LBBO_6

movsd LCPIO_1(),

l l l l l l l l l l l movsd LCPIQ_3(),
movabsq $-9223372036854,

movsd —24(),

NORTHWEST INSTITUTE for ADVANCED COMPUTING i ~ W
e

e RY
R . - . . : UNIVERSITY of
AMATH 483/583 High-Performance Scientific Computing Spring 2019 : iy © pacse WASHINGTON

40 University of Washington by Andrew Lumsdaine

Function Cali T [ine s
movsd LCPI1_0(),
mov L $0, -36()
INEEEE NN Tovsd 28000
. movsd —48()y
} + callqg _ Z7sqrt583d
—_ movq , —24()
— Fetch |movsds Instructions movg , —32(%rbp)
—_ — movq -24(),
— Decode |movsd — Subq *=32(%rbp)
= R Read |movl —
- = sqrtS83 [ovsd Lcpto ot),
— Execute movsd = movsd , —16()
-~ . - movsd , —24()
= R Write |suba = Data o
+ - cmpq $32, —32()
T [Gee LBBO_6
movsd LCPIOQ_1(),
l l l l l l l l l l l movsd LCPIO_3()
movabsq $-9223372036854,
movsd —24(),

NORTHWEST INSTITUTE for ADVANCED COMPUTING i ~ W
e

e RY
R . - . . : UNIVERSITY of
AMATH 483/583 High-Performance Scientific Computing Spring 2019 : iy © pacse WASHINGTON

41 University of Washington by Andrew Lumsdaine

main

Function Call AT—Y

movsd LCPI1_0(),
mov L $0, -36()

AN Tovsd a8)

movsd -48(),

+ callqg _ Z7sqrt583d
‘ movq , —24()

Fetch |callon Instructions movq . 32(%rbp)
— movq —24(),
Decode |movsd — subq #-32(%rbp)

R Read |movsd

sqrt58% ovsd LoPTo 0C o).

Execute [movl - novsd . —16(%rbp)
. = movsd , —24()
R Write |movsd — Data Tova 0, 320700
+ - cmpq $32, —32()
T [Hae LBBO_6
movsd LCPIQ 1(),
| | | | | | | | | | | movsd LCPIOQ_3(),

movabsq $-9223372036854,
movsd —24(),

NORTHWEST INSTITUTE for ADVANCED COMPUTING i ~ W
e

e RY
R . - . . : UNIVERSITY of
AMATH 483/583 High-Performance Scientific Computing Spring 2019 : iy © pacse WASHINGTON

42 University of Washington by Andrew Lumsdaine

main

Function Call AT—Y

movsd LCPI1_0(),
mov L $0, -36()

AN Tovsd a8)

. movsd —48()y
} + callqg _ Z7sqrt583d
—_ - movq , —24()
— Fetch |movg + structions movg , =32(%rbp)
—_ — movq -24(),
— Decode [callg = subq *-32(%rbp)
— R Read |movsd — —
- = sqrt583 [Tovsa LcPTe o(),
— Execute |movsd — — 160 00)
-~ . = movsd , —24()
= R Write |movl — Data o
+ - cmpq $32, —32()
T [Gee LBBO_6
movsd LCPIO_1(),
W movsd LCPIOQ_3(),
movabsq $-9223372036854,
movsd —24(),

NORTHWEST INSTITUTE for ADVANCED COMPUTING i ~ W
e

e RY
R . - . . : UNIVERSITY of
AMATH 483/583 High-Performance Scientific Computing Spring 2019 : iy © pacse WASHINGTON

43 University of Washington by Andrew Lumsdaine

Function Call mair T ses,

movsd LCPI1_0(),
mov L $0, -36()

AN Tovsd a8)

movsd -48(),

+ callqg _ Z7sqrt583d
‘ movq , —24()

Fetch movq* ' | | Movq » —32(%rbp)
— movq -24(),
Decode [movqg — Subq *=32(%rbp)

R Read |[callg

= sqrt58% [ovsa Lepte o),
Execute movsd = movsd , —16()
\ — movsd , —24()

R Write |[movsd — Data o

+ - cmpq $32, —32()

T [Gee LBBO_6

movsd LCPIO_1(),

l l l l l l l l l l l movsd LCPIQ_3(),
movabsq $-9223372036854,

movsd —24(),

Pacific Northwest

NORTHWEST INSTITUTE for ADVANCED COMPUTING

L .) . o [ERS . o
AMATH 483/5.83 ngh Performance Scientific Computmg Spring 2019 : ety e \hl’JANé\;{lNIGT'IY'O{“
University of Washington by Andrew Lumsdaine)

main

Function Call AT—Y

movsd LCPI1_0(),
mov L $0, -36()

AN Tovsd a8)

. movsd —48(),
} + callqg _ Z7sqrt583d
—_ - movq , —24()
- Fetch [movg sf—F=- @:s’cructlons mov . —32(%0p)
—_ — S — movq -24(),
— Decode | movq — subg %=32(%rbp)
= R Read |"°V¢ =
— — sart583 [Toved LcPTo o(rin),
— Execute [callqg = novsd . —16(% b))
—_ - = movsd -24()
— movsd -
= R erte - Data movq $0, -32()
+ - cmpq $32, —32()
T [Gee LBBO_6
movsd LCPIQ 1(),
| | | | | | | | | | | movsd LCPIQ_3(),
movabsq $-9223372036854,
movsd —24(),

NORTHWEST INSTITUTE for ADVANCED COMPUTING i ~ W
e

e RY
R . - . . : UNIVERSITY of
AMATH 483/583 High-Performance Scientific Computing Spring 2019 : iy © pacse WASHINGTON

45 University of Washington by Andrew Lumsdaine

Function Call But we just fetched | ™| [_ses,

movsd LCPI1_0(),

instructions in order TovT 50, 360500
LLLL L ovsd —28 000

movsd -48(),

+ callqg _ Z7sqrt583d
‘ movq , —24()

— Fetch subqg = Instructions movq =32(%rbp)
—_ — movq -24(),

— Decode | movqg subq #-32(%rbp)

— R Read | movag

_ sqrt58% ovsd LoPTo 0(o).

Execute ImOVq 1 / movsd , —16()
. movsd , —24()
R Write / callqg Data > TS 530)
+ cmpq $32, -32()

jae LBBO_6
movsd LCPIQ 1(),

movabsq $-9223372036854,

instruction after callg

These are all wrong

IWWVANCED COMPUTING

o NAT L TO! / >
i - i ifi i i UNIVERSITY o
AMATH 483/5.83 ngh Performance Scientific Computmg Spring 2019 : Pty Ot e WASHINGTO{\I
University of Washington by Andrew Lumsdaine)

Function Call mair T ses,

Flush the pipeline movsd LCPII_0(%ri0),
mov 1 $0, -36()
AR) Tovsd —Z80)
- movsd — —48()
} + callqg _ Z7sqrt583d

Fetch <

movq -24(),

/I . movq , —24()
\Irl]structlons movg , —32(%1bp)

— Decode subg %=32(%rbp)
— R Read
— sart583 [Toved LcPTo o(rin),
— Execute / movsd , —16()
— . movsd , —24()
: R erte Data movq $0, -32()
cmpq $32, -32()
T [Jae LBBO_6
movsd LCPIQ 1(),
. . movsd LCPIQ_3(),
Thls IS the neXt movabsq $-9223372036854,
instruction after callq movsd —24T%rbp],

NORTHWEST INSTITUTE for ADVANCED COMPUTING

a RY | %
i - i ifi i i UNIVERSITY of
AMATH 483/5.83 ngh Performance Scientific Computmg Spring 2019 : ety e S
University of Washington by Andrew Lumsdaine)

. main
Function Call suba_$64,
movsd LCPI1_0(),
mov L $0, -36()
LIl movsd , ~48(%10D)
. movsd —48(),
} + callqg _ Z7sqrt583d
—_ - movq , —24()
— Fetch movseH Instructions movq , —32(%rbp)
— movq -24(),
—_ Decode subgq *-32()
— R Read i
— sqr 3 movsd LCPIO_O(),
— Execute / movsd , —16()
— . movsd , —24()
: R erte Data movq $0, -32()
cmpq $32, -32()
jae LBBO_6
movsd LCPIO_1(),
. . movsd LCPIO_3(),
Thls 1S the neXt movabsq $-9223372036854,
instruction after callq movsd -24(%rbp],

NORTHWEST INSTITUTE for ADVANCED COMPUTING

a RY | %
i - i ifi i i UNIVERSITY of
AMATH 483/5.83 ngh Performance Scientific Computmg Spring 2019 : ety e S
University of Washington by Andrew Lumsdaine)

Function Call mair T ses,

movsd LCPI1_0(),
mov L $0, -36()

AN Toved A8
. movsd —48(),
+ callqg _ Z7sqrt583d
‘ movq , —24()
Fetch | movsdd Instructions movg . —32(%70p)
movq -24(),

Decode |movsd subq #-32(%rbp)

R Read

movsd LCPIO_O(),
Execute movsd , —16()
. movsd , —24()

R erte Data movq $0, -32()

cmpq $32, -32()

T [Jae LBBO_6

movsd LCPIQ 1(),

. . movsd LCPIQ_3(),
Thls IS the neXt movabsq $-9223372036854,

instruction after callq movsd -24T%rbp},

NORTHWEST INSTITUTE for ADVANCED COMPUTING

a RY | %
i - i ifi i i UNIVERSITY of
AMATH 483/5.83 ngh Performance Scientific Computmg Spring 2019 : ety e S
University of Washington by Andrew Lumsdaine)

Function Call mair T ses,

movsd LCPI1_0(),
mov L $0, -36()

AN Toved A8
. movsd —48(),
+ callqg _ Z7sqrt583d
‘ movq , —24()
Fetch | movsdd Instructions movg . —32(%70p)
movq -24(),

Decode [movsd
R Read |movsd
Execute
R Write

subq *-32()

sqrt58:

movsd LCPIO_0(),
movsd , —16()
movsd , —24()
movq $0, -32()
cmpq $32, -32()
jae LBBO_6

movsd LCPIO_1(),
movsd LCPIO_3(),

This is the next ovabsq $-9223372036854,
instruction after callg moved —24(vrbpd,

/>

NORTHWEST INSTITUTE for ADVANCED COMPUTING

a RY | %
i - i ifi i i UNIVERSITY of
AMATH 483/5.83 ngh Performance Scientific Computmg Spring 2019 : ety e S
University of Washington by Andrew Lumsdaine)

Function Call mair T ses,

movsd LCPI1_0(),
mov L $0, -36()

AN Toved 28000
. movsd —48(),
+ callqg _ Z7sqrt583d
‘ movq , —24()
Fetch [movg Instructions movg . —32(%10p)
movq -24(),

Decode [movsd
R Read |movsd
Execute [movsd
R Write

subq *-32()

sqrt58% [ousa Lcpte (o),

/ [movsd , —16()
movsd , —24()
~ | movq $0, -32()
cmpq $32, -32()
jae LBBO_6

movsd LCPIO_1(),
movsd LCPIO_3(),

This is the next ovabsq $-9223372036854,
instruction after callg moved —24(vrbpd,

NORTHWEST INSTITUTE for ADVANCED COMPUTING

a RY | %
i - i ifi i i UNIVERSITY of
AMATH 483/5.83 ngh Performance Scientific Computmg Spring 2019 : ety e S
University of Washington by Andrew Lumsdaine)

Function Call

— Fetch cmtq ~
— Decode |[movg
— R Read |movsd
— Execute |movsd
— R Write

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

matr subq $64,
movsd LCPI1_0(),
mov L $0, -36()
movsd , —48()
. movsd —48()y
callqg _ Z7sqrt583d
movq , —24()
Instructions movg , —32(%10p)
movq —24(),
subq *-32()
sqrt583 [Tovsa LcPTe o(),
/ movsd , —16()
movsd , —24()
movq $0, -32()
N | cmpq $32, -32()
jae LBBO_6
movsd LCPIQ_1(),
R movsd LCPIO 3(-),
Thls 15 the neXt movabsq $-9223372036854,
instruction after callg movsd ~24(rbp),

Pacific Northwest

NATIONAL LABORATORY

Proxly Operated by Bavese
fox the LS. Department of Enen

UNIVERSITY of
WASHINGTON

Function Call mair T ses,

movsd LCPI1_0(),
mov L $0, -36()

AN Toved 28000
. movsd —48(),
+ callqg _ Z7sqrt583d
‘ movq , —24()
Fetch jae o Instructions movg . —32(%70p)
movq -24(),

Decode |cmpq

R Read | movq
Execute |movsd
R Write

subq *-32()

sqrt58% [ousa Lcpte (o),

/ [movsd , —16()
movsd , —24()
movq $0, -32()
cmpq $32, -32()
N | jae LBBO_6

movsd LCPIO_1(),
movsd LCPIO_3(),

This is the next ovabsq $-9223372036854,
instruction after callg moved —24(vrbpd,

NORTHWEST INSTITUTE for ADVANCED COMPUTING

a RY | %
i - i ifi i i UNIVERSITY of
AMATH 483/5.83 ngh Performance Scientific Computmg Spring 2019 : ety e S
University of Washington by Andrew Lumsdaine)

Pipeline flush: Bad

R

v

Fetch

]
-

Decode

R Read

Execute

R Write

NORTHWEST INSTITUTE for ADVANCED COMPUTING

54

o> /

This is the next
instruction after callg

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

mair]
Flush the pipeline
<r}structions
sqrt58%

subq $64,

movsd LCPI1_0(),
mov L $0, -36()
movsd , —48()
movsd -48(),

callqg _ Z7sqrt583d
movq , —24()
movq , —32()
movq -24(),

subq *-32()

movsd LCPIO_0(),
movsd , —16()
movsd , —24()
movq $0, -32()
cmpq $32, -32()
jae LBBO_6

movsd LCPIOQ_1(),
movsd LCPIQ_3(),
movabsq $-9223372036854,
movsd —24(),

Pacific Northwest
NATIONAL LABOI

RATORY

Proxly Operated by Bavese
fox the LS. Department of Enen

W

UNIVERSITY of
WASHINGTON

Memory Access The next one may

What are typical costs for accessing memory? be cheaper
What is typical clock cycle time? /
How many clock cycles to fetch an instruction? | 200
How many clock cycles to execute load / store instruction? |40

CPI for load / store? L Fetch

600 — — <n%,tructions |
Clock — CPU — Memory
e LML - 4 [
HEBERRR
> | Load/Store
cycle
0.5 ns 100 ns

NORTHWEST INSTITUTE for ADVANCED COMPUTING ~ W
./ Pacific Northwest :

55 AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY o

Opevated by Bamcse [f
e TS gt of Enirgy WASHINGTON

Memory Access Costs

« Access to main memory has huge impact on performance

} Fetch 11
- Fetch |7 u 12
— Decode 16 — 13
— R Read 15 —
1| [Bewe] 1w |F D!
Clock — XeC%J e - D2
o LML - R erlte 13 Load/Store
> e TTTTTTTT]
cycle

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : . - j #X%‘;ﬁ:g]’fé&
University of Washington by Andrew Lumsdaine } sinde s

Memory Access Costs

« Access to main memory has huge impact on performance
« Latency: How long does the first access to data take

« Bandwidth: How much data can we continuously fetch
LIl llld

} Fetch 11
1] e - E
— Decode — 13
— R Read 1 —
1| [Een - !
Clock — XeC%J e - D2
o LML -] R erlte Load/Store
> e TTTTTTTT]
cycle

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 7 ,w,,h" / _UNIVERSITY, f
University of Washington by Andrew Lumsdaine 1 b

Memory Access Costs

« Access to main memory has huge impact on performance (600X)
* Processor would be idle almost all the time

—+ Fetch 1
1| [- E
— Decode [I3
- R Read —
] Execute - D1
Clock — : — D2
o LML RVVIrlte B Load/Store
"C'ycl'e“ ERRERERER

NORTHWEST INSTITUTE for ADVANCED COMPUTING
P e v

AMATH 483/583 High-Performance Scientific Computing Spring 2019 g [_UNIVERSITY o f
University of Washington by Andrew Lumsdaine 3 s WASHINGEON

Cache

L Small memory
near FDE unit

~N

} Fetch / Fetch 1
7| [Feeh_] <fosfuetons - st] | |2
Decode — 13

Very very fast —

y Y . R Read Cache | [C
(and eXpenswe) Execute — D1
_ — D2

ﬂ”te\Load/Store Load/Store
Clock 0.5 ns 100 ns
> e
cycle

NORTHWEST INSTITUTE for ADVANCED COMPUTING

59 AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

RATORY
UNIVERSITY of
WASHINGTON

Proxly Operated by Bavese
for the LS. Department of Enen

Pacific Northwest w_
/ NATIONAL LABOI J

Hierarchical Memory

Registers

(immediately fast) |

Level 1 Cache
LL1l (very very fast)

)

N

Fetch
|_1 /

H<(m|3|o|N|e

% [

: o W |E

r2 L2 | C

r4 (D) —

5 Load/Store \
0.5ns 5ns

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Separate L1 for
instuctions/data

N\

/\

/

Fetch B

Instructions |

5

Load/Store

100 ns

Level 2 Cache
(pretty fast)

UNIVERSITY of
WASHINGTON

Hierarchical Memor) There is also an Data goes from L2
Ll MMU and TLB to L1
FDE works with
data in registers \ / /
| + = Fetch J A /_ Fetch 11
Data goes from L1 { E_ r1 (1 - @Str“c“o”s | :i
to registers 0| [R “"i"\ L2 | E S
- r — 1
31 [E] b = D2
] \:V (5 Load/Store B Load/Store
Clock
o LML - 0.5 ns > ns el
> |-
cycle

Data goes from
main memory to L2

NORTHWEST INSTITUTE for ADVANCED COMPUTING

a 7 ;
AMATH 483/583 High-Performance Scientific Computing Spring 2019 > UNIVERSITY of
University of Washington by Andrew Lumsdaine / - — ASEINCION

Cache and Multicore Separate L1 and L2
for each core
NENNNEEEEY
Cores work on Y Fetch /
0 L1 Shared L3
separate register ||| (= [T ()
sets and instrs Rl 2 || 1
B E Z L1 B Fetch 11
— W (D) — 12
Cores workon | [[r5 | LoadStore | E =
separate register [¥ — Fetch -
- L1 — D1
sets and instrs |4 | L [T (I - D2
N 2 r2 Lo B Load/Store /
Clock r3
o ML - E L1 /
> |e W :: Load/Store (D) . .
cycle | Main memory is shared
ITTTTTTTT]

NORTHWEST INSTITUTE for ADVANCED COMPUTING

o T AT ! 27
igh- ientifi i i ERSITY o
AMATH 483/5.83 ngh Performance Scientific Computmg Spring 2019 : Pty Ot e UANg\lI‘{INIGT'IY'O{\I
University of Washington by Andrew Lumsdaine)

Performance

Highest
performance
with data here

/

/
—grn:UD'n<—|

ro

r1

r2

r3

r4

r5

performance
with data here

Higher

/

Fetch

I

(1)

Load/Store

L1
(D)

L2

Fetch B

@tructions | 12
13

5

Load/Store

/

Not so good
performance

NORTHWEST INSTITUTE for ADVANCED COMPUTING

63

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

with data here

W

UNIVERSITY of
WASHINGTON

Locality — Performance

Keep as much

Keep as much
data here as
possible

/

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019

64

/
—gm:UD'n<—|

ro

r1

r2

r3

r4

r5

K much
LIl €ep as muc data here as
data here as .
_ possible
possible
| L Fetch 11
Fetch L1 A L >
(1) — @structions |
— 13
L2 | C
B = 2l
o) = D2
Load/Store Load/Store

University of Washington by Andrew Lumsdaine

W

UNIVERSITY of
WASHINGTON

ity —
Locality — Strategy it isin Lo
||| We first look for || (hit), copy to L1 Can data be
it here (L1) missing from
If we need an / main memory?
operand here |[> ,'
_+ Fetch Fetch f1
3| [() = @tructlons | -
— re L2 —
— R -
— r3 — D1
N E ,(L[;) — Dp
— \1V s Load/Store / _ Load/Store l
Clock F : 1
o LT - If it is there the:ZI?n:]Z;) If itis notin L2,
—>C|yclle<— (hit), load : ' || get from main
BERE B look in L2 memory

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 ‘ : et . (UNIVERSITY of
University of Washington by Andrew Lumsdaine / iate L

Locality — Strategy

|| We want it to be | Or here
When we need here
the next '
operan d | j 0 Fetch L1 , Fetch 1
m g r1 (1) 1E @structions | 12
0| L2 — 13
| [rR] -2 L2 |
3| [w] 12 (L[;) — D2
| r5 Load/Store Load/Store
Clock
e LML - On a miss, copy
T;'ydl: the data we want
RERRRRRL and its neighbors

NORTHWEST INSTITUTE for ADVANCED COMPUTING

o T AT ! 27
igh- ientifi i i ERSITY o
AMATH 483/5.83 ngh Performance Scientific Computmg Spring 2019 : Pty Ot e UANg\lI‘{INIGT'IY'O{\I
University of Washington by Andrew Lumsdaine)

Locality — Strategy

Near in time
LI IILLIL]] (temporal locality):
The next the next operandisa | '
operand may be N _ / previous operand
near” the last I3 _ - L/ i Fetch P
— F - . 12
e L L r1 -w (1) [<lnstructions |
It could be /42 > L |E < 13
“near” in time (=13 “‘m» = “‘m&* D1)
- or space \Ev 4 (LD) \ _ b2
o |15 | toadStore \\ Near in space (spatial
oC . .
e ML - locality): the next operanq IS
> | in @ nearby memory location
oyele [TTTTTTTT] to a previous operand

NORTHWEST INSTITUTE for ADVANCED COMPUTING

o NAT) L L A J %
AMATH 483/583 High-Performance Scientific Computing Spring 2019 oy Ly i UNIVERSITY of
for the LS. Papartmant of Enrgy N
University of Washington by Andrew Lumsdaine / - & RAENGIO

Locality — Performance

« Caches are much smaller than main memory. How do we decide what
data to keep in cache to effect higher performance (more accesses)?

 Temporal Locality: if a program accesses a memory location, there
Is a much higher than random probability that the same location will
be accessed again
— Cache replacement policies attempt to keep cached elements in the cache for

as long as possible

« Spatial Locality: if a program accesses a memory location, there is a
much higher than random probability that nearby locations will also be
accessed (soon)

— Cache policies read contiguous chunks of data — a referenced element and its
neighbors — not just single elements

NORTHWEST INSTITUTE for ADVANCED COMPUTING ~ W
Pacific Rorthwest -

AMATH 483/583 High-Performance Scientific Computing Spring 2019 % e [f
University of Washington by Andrew Lumsdaine 3 BN VASELNGION

UNIVERSITY o

68

Matrix Vector Product

+ Recall for ANN 2t = S(Wix?) 2T =W x 2t | num cols()
N—1
* Ingeneral y<« AXux yi= Y Ayzj, i=0,...,M
2=0 /
summation | MTwo nested
num_rows()

loops

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

for (size_t i 50; i < A.num_rows(); ++i) { H
for (sizeZt j = 0; j < A.num_cols(); ++j) { —— | ow many
y(i) += AGL, §) * x(§); flops?
+ :
} \ How many times | How much
is this done? data?

UNIVER

SITY o

of
WASHINGTON

Matrix-matrix product

K—1 Three nested
Cz'j = Z Aszk:] Ioops
k=0

for (size_t 1 = 0; i < C.num_rows(); ++i) {
for (size_t j = 0; j < C.num_cols(); ++j) {
for (size_t k = 0; k < A.num_cols(); ++k) {

C(i, j) += AL, k) * Bk, j); — | Howmany
+ flops?
} \ How many times
t is this done?

How much
data?
Pacific Northwést /

i - i ifi i i g ' UNIVERSIT - Y o
AMATH 483/5.83 ngh Performance Scientific Computmg Spring 2019 Py Oyt by Bt S
University of Washington by Andrew Lumsdaine

NORTHWEST INSTITUTE for ADVANCED COMPUTING

Timing and Benchmarking

 Humans have pathological need to see who is better at everything
« But ordering requires a single number corresponding to “goodness”
« Which is impossible of course

« So we take one task and turn that into the definition of goodness (cf IQ)
— (Whatis 1Q? It's the thing that the 1Q test measures.) — My personal rant

* |In HPC, we take performance on a particular computational task to
rank the worlds computers with the 500 best scores on this task
— Linear system solution — matrix matrix product at the core
— Performance = FLOPS = (Total computations) / (Time to compute)
— Linpack — 2N?3/ (Time to compute)

NORTHWEST INSTITUTE for ADVANCED COMPUTING
P e v

AMATH 483/583 High-Performance Scientific Computing Spring 2019 € e [_UNIVERsITYo f
University of Washington by Andrew Lumsdaine st T VASELNGION

Timing a Program

* The time program in Linux (Unix) will measure time resources a

pProcess uses

|

Elapsed Wall
Clock time

($ time 1s -1R /iii/i/igfyjﬂﬂijj

real Om0.464s ————————____,,,——
user OmO0.080s

Time Spent
running user code

This is what we’ll
be using

| 8ys OmO.SSOs.___________ﬁ=___l_

Time Spent running
system code

N

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

But finer grained
control

IIIIIIIIIII

C++ Timer —
And this will be

provided to you

class Timer { — |
private:
typedef std::chrono::time_point<std::chrono::system_clock> time_t;

public: All you need to
Timer() : startTime(), stopTime() {2} wWorry about

time_t start() |{ return (startTime = std::chrono::system_clock: :now()); }
time_t stop() { return (stopTime = std::chrono::system_clock::now()); }
double elapsed() [{ return
Std: .chrono: :duration_cast<std::chrono::milliseconds>(stopTime-startTime).count(); }

private:
time_t startTime, stopTime;

+;

NORTHWEST INSTITUTE for ADVANCED COMPUTING \7’/ W
PacifigNorthwest

IONAL LABORATORY

R . - . . UNIVERSITY of
AMATH 483/583 High-Performance Scientific Computing Spring 2019 Pty Opeetd by Butcte WASHINGTON

3 University of Washington by Andrew Lumsdaine

Measuring Matrix Matrix Product Insufficient

#include <iostream> resolution
#include "Matriz.hpp" - N
#include "Timer.hpp" $./a.out
using namespace std; Declare Timer T N Elapsed
int main() { 8 0
cout << "N\tElapsed" << endl; .
P Start Timer T 16 0
for (int N = &; N < 1024; N *= 2) 32 0
Matrix AU, N), B(N, N), CQiN), D(N, N); 64 o)
Timer T; T.start(); 128 2
e | 256 28
. Stop Timer T
T.5%0p() P 512 315 |
cout << M\ << "\t" << T.elapsed() << endl;
} N
And??? \\\\

‘ return 0; Print Elapsed Time —
} f PaCi'ﬁS—oNNorthweAsTng [2
74 y / P a0 s WASHINGTON

What All Are We Timing Allocating a

Matrix operator*(consf}?&;;ix&/ﬁj uuﬂﬂetﬂiu;LJ& B) £
Matrix C(A.num_rows (9 B.num_colsf+——— /’}Veveraﬂocate ﬁ\\
zeroize(C) ; Zeroing it
for (size_t i = 0; i < A.num_rows out

for (size_t j = 0; j < B.num_cols(); ++j) { i _
for (size t k = 0; k < A.num_cols(); ++k) kcrltlca sections

new memory in
performance

C(i, j) += A(i, k) * Bk, j); of code)
+
} . The actual
} matrix product
return C;
+

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

W

UNIVERSITY of
WASHINGTON

75

Just For Benchmarking

+

void multiply(const Matrix& A, const Matrix&B, Ma

Matrix operator*(const Matrix& A, const Matrix&B) {

Matrix C(A.num_rows(), B.num_cols());
zeroizeMatrix(C) ;

multiply (A, B, C);

return C;

for (size_t i = 0; i < A.num_rows(); ++i) {
for (size_t j = 0; j < B.num_cols(); ++j) {
for (size_t k = 0; k < A.num_cols(); ++k) {
C(i,j) += A(i,k) * B(k,j);

C++ Core Guideline

/ Violation
rix&C) {

F.20: For "out" output
values, prefer return
values to output
parameters

AMATH 483/563 High-Performance Scientific Computing Spring 2019

76 University of Washington by Andrew Lumsdaine

W

UNIVERSITY of
WASHINGTON

Benchmarking

double benchmark(int M, int N, int K, long numruns) {
Matrix AM, K), B(K, N), C(M, N);

Timer T: Run the core loop
T.start(); many times to get
for (int i = 0; i < numruns; ++i)% sufficient resolution for
} multiply(A, B, C); small(er) sizes
T.stopQ);

return T.elapsed();

NORTHWEST INSTITUTE for ADVANCED COMPUTING

G NATY EE AT J %
i - i ifi i i UNIVERSITY of
AMATH 483/5.83 ngh Performance Scientific Computmg Spring 2019 : Pty Ot e S
University of Washington by Andrew Lumsdaine)

Bonus Question (Advanced Topic)

double benchmark(int M, int N, int K, long n If we have different

Matrix A(M, K), B(K, M), c(M, N); — | multiply routines (and

we will), how many of

Timer T; these do we write?

T.start();

for (int i = 0; i < numruns; ++i) {
multiply(A, B, C);

} T By how much

T.stop(); do they differ?

T How can we

parameterize that?

return T.elapsed();

NORTHWEST INSTITUTE for ADVANCED COMPUTING 7
Pacific Northwest

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : P — | _UNIVERSITY,
University of Washington by Andrew Lumsdaine / s

Bonus Question (Advanced Topic)

double benchmark(int M, int N, int K, long n1 We want to
<something> f) { — pass in
Matrix A(M, K), B(X, N), C(M, N);

something
Timer T; |
T.start(): Double bonus: It
for (int i = 0; i < numruns; ++i) { just needs an
£(A, B, O); / operator()()
} | That we call
T.stop(); like a function /
return T.elapsed(); Let S not get
} carried away

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 ‘ e ‘ UNIVERSITY of
. . . N for the LS. Dey of Energy WASHINGTON
University of Washington by Andrew Lumsdaine

Functions as Data And takes two const

s 3 functi Matrix& and a
#include < te 1> S da Tunction .

wnclude <functiona Matrix& for args
double benchm (int M, int N, int K, g numruns,

function<void (const Matrix&, const Matrixé&, Matrix&)>f}~{\\\

— Parameter f
Matrix A(M, K), B(K, ~C (M, N); That returns

Timer T; VOid
T.start(); Like multiply()
for (int i = 0; i < numruns; ++i) { P
f(A, B, C); {/////
}
T.stop(); void multiply(const Matrix& A, const Matrix&B, Matrix&C) ;

return T.elapsed();

AMATH 483/583 High-Performance Scientific Computing Spring 2019

80 University of Washington by Andrew Lumsdaine

WASHINGTON

Functions as Data (Advanced)

) And taking two
Functions :
returning void const Matrix& and a
— .
void multiply(const Matrix& A, const Matrix &B, Matri)c&/cr Matrix& for args

void multiply_2(const Matrix& A, const Matrix &B, Matrix& C);
void yet_another(const Matrix& A, const Matrix &B, Matrix& C);

/) Pass them into

double tl1 = benchmark(100, 100, 100, multiply); - another function
double t2 = benchmark(100, 100, 100, multiply_2);
benchmark (100, 100, 100, yet_another);

double t2

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 / e =5 UNIVERSITY of
. . . N for the LS. Enecgy WASHINGTON
University of Washington by Andrew Lumsdaine /

Let’s Start Benchmarking

Matrix A(M, K), B(X, N), C(M, N);

Timer T;

T.start();

for (int i = 0; i < numruns; ++i) {
multiply(A, B, C);

}

T.stopQ;

return T.elapsed();

double benchmark(int M, int N, int K, long numruns) {

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

82

bench: bench.o Matrix.o
c++ -std=c++11 bench.o Matrix.o -o bench

bench.o: bench.cpp Matrix.hpp
c++ -std=c++11 -c bench.cpp -o bench.o

Matrix.o: Matrix.cpp Matrix.hpp
c++ -std=c++11 -c Matrix.cpp -o Matrix.o

~

J

Pacific Northwest
NATIONAL LABORATORY

Proxly Operated by Bavese
for the LS. Department of Energ)

W

UNIVERSITY of
WASHINGTON

Base Performance Results

Matrix Matrix Product Performance

GFlops
w

8 16 32 64 128 256 512 1024 2048
Matrix Dimension

NORTHWEST INSTITUTE for ADVANCED COMPUTING \7’/ 'W'
Pac'rﬁgNorthwest /

IONAL LABORATORY

R . - . . UNIVERSITY of
AMATH 483/583 High-Performance Scientific Computing Spring 2019 WASHINGTON

83 University of Washington by Andrew Lumsdaine

Let’s Make One Small Change

double benchmark(int M, int N, int K, long numruns) {
Matrix A(M, K), B(K, N), C(M, N);

Tell the compiler to
Timer T; L .
T.start(); use optimization
for (int i = 0; i < numruns; ++i) {
multiply (A, B, C); / level 3
} Z
T.stop(Q); (;ench: nch.o Matrix.o h

c++ -03 -std=c++11 bench.o Matrix.o -o bench
return T.elapsed();

¥ bench.o: bench.cpp Matrix.hpp
c++ -03 -std=c++11 -c bench.cpp -o bench.o

Matrix.o: Matrix.cpp Matrix.hpp
ct+ -03 -std=c++11 -c Matrix.cpp -o Matrix.o

NORTHWEST INSTITUTE for ADVANCED COMPUTING e gl 'w'

Pacific Northwest / A

AMATH 483/583 High-Performance Scientific Computing Spring 2019 - R
University of Washington by Andrew Lumsdaine

UNIVERSITY of

84 WASHINGTON

Base Performance Results

Matrix Matrix Product Performance

6
— 00
— 03
5t |
4t |
8
o 31 |
G

8 16 32 64 128 256 512 1024 2048
Matrix Dimension

NORTHWEST INSTITUTE for ADVANCED COMPUTING \7’/ 'W'
Pac'rﬁgNorthwest | 5

) IONAL LABORATORY
AMATH 483/583 High-Performance Scientific Computing Spring 2019 3 UNIVERSITY of
85 . . . : Pl Corer WASHINGTON
University of Washington by Andrew Lumsdaine

The Three Most Important Requirements for HPC

« Locality
« Locality
« Locality

NORTHWEST INSTITUTE for ADVANCED COMPUTING —
Pacific Northwest

AMATH 483/583 High-Performance Scientific Computing Spring 2019 / ety Opereied £ . UN§VEIR]3!T]_' of
University of Washington by Andrew Lumsdaine / g -

Locality -> Performance

« Caches are much smaller than main memory. How do we decide what
data to keep in cache to effect higher performance (more accesses)?

 Temporal Locality: if a program accesses a memory location, there
Is a much higher than random probability that the same location will
be accessed again
— Cache replacement policies attempt to keep cached elements in the cache for

as long as possible

« Spatial Locality: if a program accesses a memory location, there is a
much higher than random probability that nearby locations will also be
accessed (soon)

— Cache policies read contiguous chunks of data — a referenced element and its
neighbors — not just single elements

NORTHWEST INSTITUTE for ADVANCED COMPUTING ~ W
Pacific Rorthwest -

AMATH 483/583 High-Performance Scientific Computing Spring 2019 % e [f
University of Washington by Andrew Lumsdaine 3 BN VASELNGION

UNIVERSITY o

87

Improving Locality

Consider each step of inner loop
for (int 1 = 0; 1 < M; ++1)
for (int j = 0; j < N; ++7)
for (int k = 0; k < K; ++k)
« Load C (i, j) into register C(i,j) += A(i,k) = B(k,3);
« Load A (i, k) into register I
 Load B (k, J) into register

* Multiply What can be

© Add reused?
« Storec (i, J)

* Four memory operations and two floating point operations per iteration
» 1/3 flop per cycle (if each operation is one cycle)

NORTHWEST INSTITUTE for ADVANCED COMPUTING v ~ W
Pacific Northwest -

UNIVERSITY o

of
WASHINGTON

88 AMATH 483/583 High-Performance Scientific Computing Spring 2019 e
: for the LS. Dapartmant of Enargy

University of Washington by Andrew Lumsdaine

ImprOVing Locality void multiply(const Matrix& A, const Matrix&B, Matrix&C) {

for (size_t i = 0; i < A.num_rows(); ++i) {
for (size_t j = 0; j < B.num_cols(); ++j) {
for (size_ k = 0; k < A.num_cols(); ++k) {
C(i,j) += AGi,k) * B(k,j);

}
} } |
 Load C (i, j) into register | !
« Load A (i, k) into register What can be
« Load B (k, j) into register reused?
« Multiply
« Add

e Store C(i, Jj)

* Four memory operations and two floating point operations per iteration
« 2/6 = 1/3 flop per cycle (if each operation is one cycle)

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : " . j UNIVERSITY of
University of Washington by Andrew Lumsdaine ! g - ASEINCION

Hoisting
void multiply(const Matrix& A, const Matrix&B, Matrix&C) {
for (size_t i = 0; i < A.num_rows(); ++i) {
~\\\\\\for (size_t j = 0; j < B.num_cols(); ++j) {
double t = C(i,j);
for (size_t k = 0; k < A.num_cols(); ++k) {
t += A(i,k) * B(k,j);

Hoist C(i,) |—

}
e Load A (i, k) C(i,j) = t;
« Load B (k, J) }
. Multiply]
« Add

« Two memory operations and two floating point operations per iteration
« 2/4 =1/2 flop per cycle (if each operation is one cycle)

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : " . j UNIVERSITY of
University of Washington by Andrew Lumsdaine ! g - ASEINCION

Order of Operations

[
L

| IE ;|

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performa
University of Washington by Andrew Lumsdaine

o ATON J
nce Scientific Computing Spring 2019 - UNIVERSITY o f
PUtng =pring 3 forthe US T of Enargy WASHINGTON

Order of Operations

C(i,j)

J

\—

A(i,k)

B(k, j)

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performa

nce Scientific Computing Spring 2019

University of Washington by Andrew Lumsdaine

Pacific Northwest
NATIONAL LABORATORY

Order of Operations How many
times is each How many
. row used? times is each
C(i,]) : A(i,k) column used?

(T |

%
|
_ X

NORTHWEST INSTITUTE for ADVANCED COMPUTING —
Pacific Northwest

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : PouyOpraediypamse | 2 JUNIVERSITYo
University of Washington by Andrew Lumsdaine g -

Reuse: How Many Times Are Data Reused?

C(i,j)||CCL,3+1) || AGi+1,k) ||A(i,k)

[k B(k,j)

C(i+1,3) C(i+1,j+1)| —

used twice
NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 / o " UN;"EIR]:”_]‘_' of
University of Washington by Andrew Lumsdaine / g -

Improving Locality: Unroll and J B(k) is
)
void tiledMultiply2x2(const Matrix& A, const Matrix used twice
for (size_t i = 0; i < A.num_rows(); i += 2) {
for (size_t j = 0; j < B.num_cols(); j {
for (size_t k = 0; k < A.num_cols(); . .
CG , §) +=AG , B B §) B(k,j+1) is

C(i , j+1) += A(i , k) * j+1); used twice
C(i+1, J) += A(i+1, k) * B(k, j 2 |
C(i+1/ j+1) += A(i+1, k) * B(k, j+1);

} \ A(i k) is

} Can also hoist A(i+1,k) is used twice
(independent of k) used twice

« Four memory operations and eight floating point operations per iteration
« 8/12 = 2/3 flop per cycle (if each operation is one cycle) — 2X the base case

NORTHWEST INSTITUTE for ADVANCED COMPUTING ¢
Pacific Northwest

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : P — | _UNIVERSITY,
University of Washington by Andrew Lumsdaine / g -

Example: Register Locality

Matrix Matrix Product Performance

6
— 00
— 03
5F — 2x2|
4l i
8
o3l |
G]

8 16 32 64 128 256 512 1024 2048
Matrix Dimension

W

NORTHWEST INSTITUTE for ADVANCED COMPUTING —
Pacific Northwest
S LOK UNIVERSITY of

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : (L
9% University of Washington by Andrew Lumsdaine e s WASHINGEON

Y

2by4

: Matrix Matrix Product Performance
— 00
— 03
5F — 2x2|
— 2x4
4,

8 16 32 64 128 256 512 1024 2048
Matrix Dimension

NORTHWEST INSTITUTE for ADVANCED COMPUTING

Pacific Northwest / W_
NATIONA J

L LABORATORY
AMATH 483/583 High-Performance Scientific Computing Spring 2019 = . UNIVERSITY of
97 . . . : Pl cmiet of Kapgy WASHINGTON
University of Washington by Andrew Lumsdaine

4 by 2

: M‘atrix Mgtrix Prqduct Performange
— 00
— 03
5¢ — 2x2|7
— 2x4
— 4x2
4l i

8 16 32 64 128 256 512 1024 2048
Matrix Dimension

NORTHWEST INSTITUTE for ADVANCED COMPUTING

Pacific Northwest / W_
NAT J

IONAL LABORATORY
AMATH 483/583 High-Performance Scientific Computing Spring 2019 = . UNIVERSITY of
98 . . . : Pl cmiet of Kapgy WASHINGTON
University of Washington by Andrew Lumsdaine

4 by 4

Matrix Matrix Product Performance

6
— 00
— 03
5¢ — 2x2|7
— 2x4
— 4x2
A4 4x4 |

8 16 32 64 128 256 512 1024 2048
Matrix Dimension

NORTHWEST INSTITUTE for ADVANCED COMPUTING \7’/ 'W'
Pac'rﬁgNorthwest /

AMATH 483/583 High-Performance Scientific Computing Spring 2019 = . UNIVERSITY of
99 . . . : Pl cmiet of Kapgy WASHINGTON
University of Washington by Andrew Lumsdaine

L LABORATORY

Tiling and Hoisting

void hoistedTiledMultiply2x2(const Matrix& A, const Matrix&B, Matrix&C) {
for (size_t i = 0; i < A.num_rows(); i += 2) {
for (size_t j = 0; j < B.num_cols(); j += 2) {

double t00 = C(i, j); double t01 = C(i, j+1);

double t10 = C(i+1,3j); double t11 = C(i+1,j+1);

for (size_t k = 0; k < A.num_cols(); ++k) { \\\
£00 += A(i , k) * B(k, j);
t01 += A1 , k) * B(k, j+1); . .
£10 += A(i+1, k) * B(k, ;) : Hoist 2x2 tile
t1l += A(i+1, k) * B(k, j+1);

+
C(i, j) = t00; C(i, j+1) = t01;
C(i+1,j) = t10; C(i+1,j+1)

tl1;

NUKIHVWVESI INSIIIUIE jor AUVANLEU LUMFU IING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 / ety T‘_) ‘ vﬂg{fﬁg?é&
University of Washington by Andrew Lumsdaine g -

Tiling and Hoisting

Matrix Matrix Product Performance

— 00

— 03

5¢ — 2x2 1

— 2x4

— 4x2
4x4

hoisted

GFlops

8 16 32 64 128 256 512 1024 2048
Matrix Dimension

NORTHWEST INSTITUTE for ADVANCED COMPUTING \7’/ 'W'
Pac'rﬁgNorthwest / {5

AMATH 483/583 High-Perf Scientific Computing Spring 2019 ‘ G | UNIVERSITY of
Igh-Ferrormance scientiric Computing spring / .,':;,driﬁ:_j,‘:‘.m,” WASH-INGTON

University of Washington by Andrew Lumsdaine

101

Improving Locality: Cache

« Large matrix problems won't fit completely into cache
« Use blocked algorithm — work with blocks that will fit into cache

Crj= Z ArxkBr
K

Coo Co1 Co2 Cos Ago Aot Ap2 Aps Boo By Boa Bos

Cho Ciy Ci2 Cis Aqp A Aqo Ars B B By, Bis
= X

Cao Con Cao Cas As Az Az Aos Bsg Boy Bas B3

Cso Csy C3 Css3 Asp Az Asp Ass Bs Bs; | Bs2 Bss

« Each product term fits completely, imQ gaghesand rupsat -highsperformance
« Cache misses amortized work with data

NORTHWEST INSTITUTE for ADVANCED COMFUTING

W

UNIVERSITY of
WASHINGTON

AMATH 483/583 High-Performance Scientific Computing Spring 2019

102 University of Washington by Andrew Lumsdaine

Blocking and Tiling

const int blocksize =

for (size_t jj = 0;

for (size_t i =
for (size_t j
for (size_t

void blockedTiledMultiply2x2(const Matrix& A, const Matrix&B, Matrix&C) {

std: :min(A.num_rows(), 32);

for (size_t ii = 0; ii < A.num_rows(); ii += blocksize) {

jj < B.num_cols(); jj += blocksize)

for (size_t kk = 0; kk < A.num_cols(); kk += blocksize) {

ii; 1 < ii+blocksize; i += 2) {
= jj; j < jjtblocksize; j += 2) {
k = kk; k < kkt+blocksize; ++k

ci , j) +=AE , k) =Bk, j);
Ci , j+1) += A , k) * B(k, j+1);
C(i+1, j) += A(i+1, k) * B(k, j);
C(i+1, j+1) += A(i+1, k) * B(k, j+1);
+
}
+
+
+
+

Outer loops work

across blocks
(for each block)

Inner loops
work on blocks

AMATH 483/583 High-Performance Scientific Computing Spring 2019

103 University of Washington by Andrew Lumsdaine

W

UNIVERSITY of
WASHINGTON

Blocking and Tiling and Hoisting

Matrix Matrix Product Performance

— 00
— 03
5¢ — 2x2 1
— 2x4
— 4x2

4x4
— hoisted
— blocked
— blockhoisted

GFlops
w

8 16 32 64 128 256 512 1024 2048
Matrix Dimension

NORTHWEST INSTITUTE for ADVANCED COMPUTING \V’/ 'W'
PacifigNorthwest /

IONAL LABORATORY

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : Pl ot I aicte #X;ﬁ{‘ﬁ'&'&&
University of Washington by Andrew Lumsdaine g -

104

Copying What else gets

pulled into cache What else gets

C(i,j) . A(i,k) . pulled into cache
_‘7> \ B(k,j) .

e | e -

NORTHWEST INSTITUTE for ADVANCED COMPUTING >~ W
Pacific Northwest | -

UNIVERSITY o

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : Prouly Operaied by Bamcse
2 for the LLS. rapartment of Energy

f
University of Washington by Andrew Lumsdaine WASHINGTON

105

Copying and Transpose

What else gets

pulled into cache What else gets

, pulled into cache
cli,j| . AL, k)
\
) i J —

NORTHWEST INSTITUTE for ADVANCED COMPUTING

g NATY ATORY / z
i - i ifi i Mok I UNIVERSITY g
AMATH 483/5.83 ngh Performance Scientific Computmg Spring 2019 Pty Ope e S
University of Washington by Andrew Lumsdaine)

Copying and Blocking and Tiling

Matrix Matrix Product Performance

00
03
2X2
2x4
4x2
4x4

hoisted
blocked

blockhoisted
copyblocked N

NORTHWEST INSTITUTE for ADVANCED COMPUTING

107

16 32 64 128 256 512

Matrix Dimension

AMATH 483/583 High-Performance Scientific Computing Spring 2019

University of Washington by Andrew Lumsdaine

1024

2048

Pacific N
NAT

orthwest

IONAL LABORATORY

Proen
fox the

Nerted by Batese
Sepuartment of Eneng)

W

UNIVERSITY of
WASHINGTON

Blocking and Tiling and Hoisting and Copying

Matrix Matrix Product Performance

6
— 00
— 03
5t — 2x2 1
— 2Xx4
— 4x2 i
4 4x4 1
— hoisted
g, — blocked |
G — blockhoisted
— copyblocked N
2 — copyblockhoisted|
N

8 16 32 64 128 256 512 1024 2048
Matrix Dimension

NORTHWEST INSTITUTE for ADVANCED COMPUTING \V’/ 'W'
PacifigNorthwest /

IONAL LABORATORY

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : Pl ot I aicte #X;ﬁ{‘ﬁ'&'&{\.
University of Washington by Andrew Lumsdaine g -

108

Recap

 Locality: Write software so hardware can leverage it
« Register locality (tiling / unroll and jam)

» Hoisting

« Blocking

« Copying / transpose multiply

* Always use —03 for release (not for debug)

NORTHWEST INSTITUTE for ADVANCED COMPUTING i ~ A
Paciic porttest | -

AMATH 483/583 High-Performance Scientific Computing Spring 2019 P —
University of Washington by Andrew Lumsdaine 3 g -

UNIVERSITY o

of
109 WASHINGTON

~N
Name ThIS Famous Person Any sufficiently advanced

Wi .ﬁ. m_"—
3 v "
iNY

technology is indistinguishable
from magic

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 = TR [UNIvERSITY o
University of Washington by Andrew Lumsdaine / - o

This Nearly Famous Person Says
™)

Optimizing compilers are
sufficiently advanced

r

technology)

And so are modern
microprocessors

But especially optimizing\ L

Magic: the power of
apparently influencing the
course of events by using
mysterious or supernatural

forces

~\

W,

compilers for modern
microprocessors)

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

111

W

UNIVERSITY of
WASHINGTON

4 ™)
— Magic: the power of
apparently influencing the

course of events by using

Tuning How do we find |
the optimal

« Starting with base code combination?
« Various compiler optimizations help .

i _ _ mysterious or supernatural
 Tiling (which size) forces
« Blocking (what size) \. v
« What size works best for Tiling and Blocking together?

« What loop ordering? Matrix matrix product has six different

orderings? What block ordering? The answer will be

different for
« \What about when we add AVX, and threads, etc? different CPUs

NORTHWEST INSTITUTE for ADVANCED COMPUTING ~ W
Pacific Northwest :

UNIVERSITY o

of
WASHINGTON

o AMATH 483/583 High-Performance Scientific Computing Spring 2019 R
1 for the ULS. Department of Energy

University of Washington by Andrew Lumsdaine

Finding the Sweet Spot And wrote a program
to generate different

« Exhaustive parameter space search multiply functions
— Tiling, Blocking, Compiler flags, AVX insWrdering
 Original project at UC Berkeley phiPAC (Bilmes et al)

* Further developed by Whaley’and Dongarra —~Automatically Tuned
Linear Algebra Subprograims (ATLAS)

— Recently honored with “test of time” award

This started as a The f:ompetltlon wa.s Students were the
to write fastest matrix-

final course project _ good kind of lazy
matrix product

NORTHWEST INSTITUTE for ADVANCED COMPUTING v ~ W
Pacific Northwest -

UNIVERSITY o

of
WASHINGTON

113 AMATH 483/583 High-Performance Scientific Computing Spring 2019 e
: for the LS. Dapartmant of Enargy

University of Washington by Andrew Lumsdaine

Thank you!

NORTHWEST INSTITUTE for ADVANCED COMPUTING . \V’/ 'W'
PacifigNorthwest / A

IONAL LABORATORY

igh-| ientifi i i g UNIVERSITY of
AMATH 483/583 ngh Performance Scientific Computmg Spring 2019 - et e S
University of Washington by Andrew Lumsdaine

114

0 0,

© Andrew Lumsdaine, 2017-2018

Except where otherwise noted, this work is licensed under

https://creativecommons.org/licenses/by-nc-sa/4.0/

NORTHWEST INSTITUTE for ADVANCED COMPUTING
UNIVERSITY of

AMATH 483/583 High-Performance Scientific Computing Spring 2019 | oty O S e
University of Washington by Andrew Lumsdaine / b

Microprocessors

« Basic operation: read and execute program instructions stored in
memory

« Fundamental performance / efficiency metric: cycles per instruction
(CPI) also FLC Instructions

can only be i Fetch
- N
run in CPU I~ — <n%,tructions |
Transitions 4 cpu Memory
Clock — —
move data |—" — —
oo cpy | UL A/ - “‘m N\
throug > | VAR Load/Store Program
cycle [Data can only instructions
be operated and data

on in CPU

NORTHWEST INSTITUTE for ADVANCED COMPUTING ~ A
Paciic povitwest -

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : Pl ot I aicte
University of Washington by Andrew Lumsdaine ! Sl b

UNIVERSITY o

117 WASHINGTON

Processor Core Instruction Handling

* A single instruction may require multiple steps from fetch to

completion

Clock

—»| |e
cycle

Program
instructions

. CPU Sends
Instruction
. address to
is returned
memory
L L] AW
} \ Fetch 11
Fetch - 12
Decode — 13
R Read — D1
Execute — Do
R erite B Load/Store

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Baese
for the LS. Department of Enen

Program
Data

IIIIIIIIIII

Processor Core Instruction Handling

« By pipelining, multiple instructions can be executed at each clock

cycle | | | Fourth is
* Form of instruction-level parallelism fetched

I I I I

} / Fetch 11

— Fetch 14 u 12

: Decode 13 : 13

|| = < |

Clock — XeC%J e - D2
o LML - o RWIrlte B Load/Store

> | TTTTTTTT Previous
cycle . .
Instructions

move along

NORTHWEST INSTITUTE for ADVANCED COMPUTING
P e v

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : Pty Operatod by Baese ' _UNIVERSITYo f
University of Washington by Andrew Lumsdaine ! s

