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Overview

« “PDP-11" machine model
* Pipelining, pipeline stalls
* Hierarchical memory

« Timing and benchmarking
« Compiler optimizations
 Tiling

« Blocking
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Microprocessors

« Basic operation: read and execute program instructions stored in
memory

« Fundamental performance / efficiency metric: cycles per instruction
(CPI) also FLC Instructions

can only be i Fetch
- N
run in CPU I~ — <n%,tructions |
Transitions 4 cpu Memory
Clock — —
move data |—" — —
oo cpy | UL A/ - “‘m N\
throug > | VAR Load/Store Program
cycle [Data can only instructions
be operated and data

on in CPU
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Performance-Oriented Architecture Features

« Execution Pipeline

— Stages of functionality to process issued instructions

— Hazards are conflicts with continued execution

— Forwarding supports closely associated operations exhibiting precedence constraints
* Qut of Order Execution

— Uses reservation stations

— Hides some core latencies and provide fine grain asynchronous operation supporting
concurrency

 Branch Prediction

— Permits computation to proceed at a conditional branch point prior to resolving
predicate value

— Overlaps follow-on computation with predicate resolution
— Requires roll-back or equivalent to correct false guesses
— Sometimes follows both paths, and several deep
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Microprocessors

« Basic operation: read and execute program instructions stored in
memory

« Fundamental performance / efficiency metric: cycles per instruction
(CPI) also FLC Instructions

can only be i Fetch
- N
run in CPU I~ — <n%,tructions |
Transitions 4 cpu Memory
Clock — —
move data |—" — —
oo cpy | UL A/ - “‘m N\
throug > | VAR Load/Store Program
cycle [Data can only instructions
be operated and data

on in CPU
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Processor Core Instruction Handling

* A single instruction may require multiple steps from fetch to

completion

Clock

—»| |e
cycle

Program
instructions

. CPU Sends
Instruction
. address to
is returned
memory
L L] AW
} \ Fetch 11
Fetch - 12
Decode — 13
R Read — D1
Execute — Do
R erite B Load/Store
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Processor Core Instruction Handling

* A single instruction may require multiple steps from fetch to

completion Instruction
is fetched
LI/
—+ / Fetch I
| [Fen [ JF 2
. Decode — I3
E : Read E .l '. D1
Clock — xecgte [ b2
- A ] RWI”te [ Load/Store
> | [TTTTTTTT]
cycle
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Processor Core Instruction Handling

* A single instruction may require multiple steps from fetch to

completion _
Instruction
is decoded
LLL Ll
} / Fetch 11
— Fetch — 12
: Decode 1 : 13
E : Read E D1
Clock —] Xecfjte - “‘ ' D2
o LML - ] RWIrlte B Load/Store
> e TTTTTTTT]
cycle
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Processor Core Instruction Handling

* A single instruction may require multiple steps from fetch to

completion Registers
are read
LLr it /
} Fetch 11
- Fetch E 12
— Decode — 13
_ / =
- : Read 1 = D7
Clock — Xecfjte - “‘ ' D2
o LML - ] RWIrlte B Load/Store
> e TTTTTTTT]
cycle
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Processor Core Instruction Handling

* A single instruction may require multiple steps from fetch to

completion
Ll
} Fetch 11
— Fetch u 12
: Decode : 13
E : Read - E D1
Clock —] Xecf“e\ - “‘ ' D2
o LML - ] RWIrlte B Load/Store
™~ TTTTTTTTTT S _
cycle Instruction
is executed
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Processor Core Instruction Handling

* A single instruction may require multiple steps from fetch to

completion
LLr it
} Fetch 1
— Fetch u 12
— Decode — 13
— R Read —
1| [Beou - 4
Clock — XeC%J e - D2
o LML - ] RWIrlte Q B Load/Store
> e TTTTTTTT]

Registers
are written
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Processor Core Instruction Handling

* A single instruction may require multiple steps from fetch to

completion
LLr it
} Fetch 11
- Fetch u 12
— Decode — 13
— | [RRead =
= d eat - D1
Clock — XeC%J e - D2
o LML - ] RWIrlte B Load/Store
> e TTTTTTTT]

Function is
retired
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Processor Core Instruction Handling

* A single instruction may require multiple steps from fetch to

completion But we can’t make Let’s use
o ] 4id one instruction 5X them in
ke ot one [~ 2SSk ryrrr ) —paralel
take for one
instruction \\ v / B Feteh I
- Fetch — 2
5 CP] — Decode — I3
— R Read —
- = D1
Clock = Exec.ute — Do
o LML R Write B Load/Store
> e RRRRRRRRAI
cycle

These stages can

process in parallel
|
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Processor Core Instruction Handling

« By pipelining, multiple instructions can be executed at each clock

cycle Fetch first
« Form of instruction-level parallelism (ILE instruction

—

AN

} / Fetch I
- Fetch 1 u 12
— Decode — 13
— R Read —
1| [Een - !
Clock — XeC%J e - D2
o LML - ] R erlte Load/Store
> e TTTTTTTT]
cycle
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Processor Core Instruction Handling

« By pipelining, multiple instructions can be executed at each clock
cycle

« Form of instruction-level parallelism (

When first instruction is

ILP) in decode, fetch second

N\

} y Fetch 1

1| [ T eAr 2

. Decode I — I3

E : Read \E D1

Clock | [Eecute \ “‘Eﬁ‘ D2
o LML - ] RWIrlte First instruction |

> |- TTTTTTTT] moves to
cycle
decode

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : : e O ' _UNIVERSITYo f
University of Washington by Andrew Lumsdaine / sl s




Processor Core Instruction Handling

« By pipelining, multiple instructions can be executed at each clock

cycle .
y _ _ . Third is
* Form of instruction-level parallelism fetched
Second LLLLLLLLLL /
moves to . ; / B Fetch 1
— Fetch 13 — - 12
decode = nsiruciions | .
— R Read 1 —
_ . — D1
Clock O] | [Execute — “‘Eﬁ‘ D2
o ML - ] RWIrlte B | nad/Store
> |- '
Syclo [TTTTTTTT] First moves
to Read
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Processor Core Instruction Handling

« By pipelining, multiple instructions can be executed at each clock

cycle | | | Fourth is
* Form of instruction-level parallelism fetched

I I I I

} / Fetch 11

— Fetch 14 u 12

: Decode 13 : 13

|| = < |

Clock — XeC%J e - D2
o LML - o RWIrlte B Load/Store

> | TTTTTTTT Previous
cycle . .
Instructions

move along
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Processor Core Instruction Handling

« By pipelining, multiple instructions can be executed at each clock

cycle e
y _ _ _ Fifth is
» Form of instruction-level parallelism|  t.t hed
LIl
} / Fetch 1
— Fetch 15 u -M 12
E Decode | 14 E 13
— R Read 13 —
Clock E Execgte 12 E B;
o LML - RWIrlte \\|1 B Load/Store
> e mrrrrrrny  Previous
cycle . .
Instructions

move along

NORTHWEST INSTITUTE for ADVANCED COMPUTING
P e v

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : Pty Operatod by Baese ' _UNIVERSITYo f
University of Washington by Andrew Lumsdaine ! s




Processor Core Instruction Handling

« By pipelining, multiple instructions can be executed at each clock

cycle

« Form of instruction-level parallelism (

Clock

—»| |e
cycle
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Processor Core Instruction Handling

« By pipelining, multiple instructions can be executed at each clock
cycle

« Form of instruction-level parallelism (ILP)

} Fetch 11
- Fetch |7 u 12
— Decode 16 — 13
— R Read 15 —
1| [Bewe] 1w |F D!
Clock —] xec%J © - D2
o ML RWIr'te I3 Load/Store
> e TTTTTTTT]
cycle
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Pipeline Stall

« By pipelining, multiple instructions can be executed at each clock
cycle

| | _ Fourth is
* Form of instruction-level parallelism fetched

Lttt

} / Fetch 11
- Fetch 14 u 12
: Decode 13 : 13
|| = < |
Clock — XeC%J e - D2

o LML - ] RWIrlte B Load/Store

> e |||||||||\Whatiffirstis

cycle ]
a jump or
branch
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Pipeline Stall

« By pipelining, multiple instructions can be executed at each clock
cycle

| | _ Fourth is
* Form of instruction-level parallelism fetched

Lttt

} / Fetch 11
- Fetch 14 u 12
: Decode 13 : 13
|| = < |
Clock — XeC%J e - D2

o LML - ] RWIrlte B Load/Store

> e |||||||||\Whatiffirstis

cycle ]
a jump or
branch
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Pipeline Stall

« A single instruction may require multiple steps from fetch to

completion Start fetching
from where we
branch to
LLL Ll \
} Fetch 11
E Fetch E 12
] Decode — 13
— R Read —
— — D1
Clock - Execgte — =
o LML - ] RWIrlte Q B Load/Store
> - MTTTTTTTTT We need to

discard the other
instructions
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Branch Prediction

 Load the instructions we think will be branched to

There are two When a branch
possibilities for what instruction enters
next instruction will be o / the pipeline
}\ / Fetch T
] Fetch T E 12
] Decode — 13
E :Read E 51
Clock _ xecute — “‘Eﬁ‘ D2
o LML - ] RWIrlte B Load/Store
> e MTTTTTTTTT
cycle
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Branch Prediction

 Load the instructions we think will be branched to

This is the instruction the
CPU predicts will branch to

N\

} / Fetch 1

— Fetch 127 E 12

. Decode I — I3

E : Read \E D1

Clock | [Eecute \ “‘Eﬁ‘ D2
o LML - o RWIrlte First instruction [

> e TTTTTTTT] moves to
cycle
decode
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Branch Prediction

 Load the instructions we think will be branched to

* And their successors Third is
fetched
Second LLLLLLLLLL /
moves to . ; / B Fetch 1
— Fetch 13 — - 12
decode = nsiruciions | .
— R Read 1 —
- . — D1
Clock O] | [Execute — “‘Eﬁ‘ D2
o ML - ] RWIrlte B | nad/Stare
> | '
Syclo [TTTTTTTT] First moves
to Read
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Instruction Pipelining

 When instruction is executed we were either right
— Continue the pipeline

Fourth is
« Orwrong fetched
— Flush the pipeline LLLLLLLLLL

—+ / Fetch 1
- Fetch 4 | = 12
— Decode | 13 | — 13
— R Read 12 — D1
Clock - Execgte 11 — D2

o LML - N RWIrlte B Load/Store

> | TTTTTTTT Previous

cycle _ _
Instructions

move along '
NORTHWEST INSTITUTE for ADVANCED COMPUTING _ \gh?:’/ w

28 AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

Proxly Operated by Bavese
for the LS. Department of Enen



Pipeline Stall from Mis-Predict

« A single instruction may require multiple steps from fetch to

completion Start fetching
from where we
branch to
LLL Ll \
} Fetch 11
E Fetch E 12
] Decode — 13
— R Read —
— — D1
Clock - Execgte — =
o LML - ] RWIrlte Q B Load/Store
> - MTTTTTTTTT We need to

discard the other

instructions
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Performance-Oriented Architecture Features

« Execution Pipeline

— Stages of functionality to process issued instructions

— Hazards are conflicts with continued execution

— Forwarding supports closely associated operations exhibiting precedence constraints
* Qut of Order Execution

— Uses reservation stations

— Hides some core latencies and provide fine grain asynchronous operation supporting
concurrency

 Branch Prediction

— Permits computation to proceed at a conditional branch point prior to resolving
predicate value

— Overlaps follow-on computation with predicate resolution
— Requires roll-back or equivalent to correct false guesses
— Sometimes follows both paths, and several deep
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Pipeline Stall

« By pipelining, multiple instructions can be executed at each clock
cycle

| | _ Fourth is
* Form of instruction-level parallelism fetched

Lttt

} / Fetch 11
- Fetch 14 u 12
: Decode 13 : 13
|| = < |
Clock — XeC%J e - D2

o LML - ] RWIrlte B Load/Store

> e |||||||||\Whatiffirstis

cycle ]
a jump or
branch
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Pipeline Stall

« A single instruction may require multiple steps from fetch to

completion Start fetching
from where we
branch to
LLL Ll \
} Fetch 11
E Fetch E 12
] Decode — 13
— R Read —
— — D1
Clock - Execgte — =
o LML - ] RWIrlte Q B Load/Store
> - MTTTTTTTTT We need to

discard the other
instructions
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Compiling functions

#include <iostream>
#include <cmath>

double sqrt583(double z) {
double x = 1.0;

for (size_t 1 = 0; i < 32; ++i) {
double dx = (x*x-2z) / (2.0%x)
x += dx;
if (abs(dx) < 1.e-9) break;

.
b

$ c++ main.cpp
$ ./a.out
1.4142

Compile main.cpp

Translate it into a

+

/
$ c++ main.cpp

~| language the cpu can run

|

return x;

}

The executable (program

that the cpu can run)

int main () {

$ ./a.out

std::cout << sqrtb83(2.0) << std::endl;

return O;
+
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Compiled language

main

#include <iostream>
#include <cmath>

double sqrt583(double z) {
double x = 1.0;

for (size_t i = 0; i < 32; ++i) {

double dx = - (x*x-z) / (2.0%x) ;
x += dx;
if (abs(dx) < 1.e-9) break;

+

return x;

}

int main () {

std: :cout

return O;

}

<< sqrtb83(2.0) << std::endl;

$ c++ main.cpp

sqrt583

ance Scientific Computing Spring 2019

University of Washington by Andrew Lumsdaine

subq $64,

movsd  LCPI1_0( ),
mov 1 $0, -36( )
movsd , —48( )
movsd  —48( ),

callg __Z7sqrt583d
movq , —24( )
mov(q , —32( )
movq -24( ),

subq *-32( )

movsd  LCPIO_O( ),
movsd , —16( )
movsd , —24( )
movq $0, -32( )
cmpq $32, -32( )
jae LBBO_6

movsd  LCPI@_1( ),
movsd  LCPIQ_3( ),
movabsq $-9223372036854,
movsd  —24( ),
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o H V24 .
mailn’ entr main | subg  $64,
Fetch Decode Execute enty | — TS
: : point oVl 0, —36(-07)
CPU instructions are movsd 28000
. “" - movsd  —48( )y
stored in memory [—_ main A ot —Z7sgrosesa
TN function e
movq , =32( )
| movq —24( ),
— + — subq *-32( )
— Fetch l6 = Instructions SEEE
] : - :
: Decode !5 :: qu rt583” — s(q rt588% | movsd  LCPIO_O( ),
| R Read I4 — . movsd , —16( )
- . = entry point movsd , =24(%rbp)
= Execute | I3 F;: | | TS0, 32000
— R Write | g — < Data > cnpg $32, -32(%rbp)
- = — jae LBBO_6
+ movsd  LCPI@_1( ),
W " ” movsd LCPIOQ_3( ),
Sqrt583 movabsq $-9223372036854,
funCtlon movsd  —24( ),
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Function Call e
Call sqrt583 movsd  LCPI1_0(%rip),
mov 1 $0, -36( )
movsd , —48( )
”main” movsd  —48( )y
- allg __Z7sqrt583d
LIt LLL function | fovq__ wrax, “24iArbp)
movq , =32( )
| + movq —24( ),
— _ — . subq *-32( )
= Fetch l6 — Instructions SRR
— i —
- Decode 5 ;: sqrt588% | movsd  LCPI0_0( ),
— R Read i4 — movsd , —-16( )
-l . = movsd , —24( )
: Execute 13 :: movq $0, -32( )
— R Write | g — cnpq $32, —32(%bp)
— + -~ - jae LBBO_6
movsd  LCPI@_1( ),
d LCPIO_3( )
W o ” movs _ ,
Sqrt583 movabsq $-9223372036854,
functlon movsd  —24( ),
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Function Call mair T ses,

movsd  LCPI1_0( ),
mov L $0, -36( )

AN Tovsd a8 )

movsd -48( ),

+ callqg _ Z7sqrt583d
‘ movq , —24( )

— Fetch |subg < Instructions movg , —32(%1bp)
—_ — movq -24( ),
— Decode — subq  #-32(%rbp)
— R Read =
- = sqrtS83 [ovsd  Lcpto ot ),
— Execute S~ movsd , —16( )
-~ . = movsd , —24( )
: R erte — Data movq $0, -32( )
+ - cmpq $32, —32( )
T [Gee LBBO_6
movsd  LCPIOQ_1( ),
| | | | | | | | | | | movsd  LCPIQ_3( ),
movabsq $-9223372036854,
movsd  —24( ),
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Function Call mair T ses,

movsd  LCPI1_0( ),
mov L $0, -36( )

AN Tovsd a8 )

movsd -48( ),

+ callqg _ Z7sqrt583d
‘ movq , —24( )

— Fetch |movsdT F Instructions movg , —32(%rbp)
—_ — movq -24( ),
- DeCOde Squ = subq *-32( )
— R Read —
— — sart58% ovsa  LcpTo ol i),
— Execute = movsd , —16( )
-~ . = movsd , —24( )
: R erte — Data movq $0, -32( )
+ - cmpq $32, —32( )
T [Gee LBBO_6
movsd  LCPIQ 1( ),
| | | | | | | | | | | movsd  LCPIO_3( ),
movabsq $-9223372036854,
movsd  —24( ),
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Function Call mair T ses,

movsd  LCPI1_0( ),
mov L $0, -36( )

AN Tovsd a8 )

movsd -48( ),

+ callqg _ Z7sqrt583d
‘ movq , —24( )

— Fetch |movl 7 B Instructions movq , —32(%bp)
—_ — movq -24( ),
— Decode |movsd — subqg _ #-32(%rbp)
— R Read |subqg —
- = sqrtS83 [ovsd  Lcpto ot ),
— Execute S~ movsd , —16( )
-~ . = movsd , —24( )
: R erte — Data movq $0, -32( )
+ - cmpq $32, —32( )
T [Gee LBBO_6
movsd  LCPIOQ_1( ),
| | | | | | | | | | | movsd  LCPIQ_3( ),
movabsq $-9223372036854,
movsd  —24( ),
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Function Call mair T ses,

movsd  LCPI1_0( ),
mov L $0, -36( )

AN Toved A8
. movsd  —48( ),
+ callqg _ Z7sqrt583d
‘ movq , —24( )
Fetch |movsd Instructions movg . —32(%10p)
movq -24( ),

Decode |movl — subq  #-32(%rbp)
R Read |movsd

= sqrt58% [ovsa  Lepte o),
Execute |[subg = movsd . —16(=bp)
\ — movsd , —24( )

R erte — Data movq $0, -32( )

+ - cmpgq $32, -32( )

T [Gee LBBO_6

movsd  LCPIO_1( ),

l l l l l l l l l l l movsd  LCPIQ_3( ),
movabsq $-9223372036854,

movsd  —24( ),
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Function Cali T [ine s
movsd  LCPI1_0( ),
mov L $0, -36( )
INEEEE NN Tovsd 28000
. movsd  —48( )y
} + callqg _ Z7sqrt583d
—_ movq , —24( )
— Fetch |movsds Instructions movg , —32(%rbp)
—_ — movq -24( ),
— Decode |movsd — Subq  *=32(%rbp)
= R Read |movl —
- = sqrtS83 [ovsd  Lcpto ot ),
— Execute movsd = movsd , —16( )
-~ . - movsd , —24( )
= R Write |suba = Data o
+ - cmpq $32, —32( )
T [Gee LBBO_6
movsd  LCPIOQ_1( ),
l l l l l l l l l l l movsd  LCPIO_3( )
movabsq $-9223372036854,
movsd  —24( ),
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main

Function Call AT—Y

movsd  LCPI1_0( ),
mov L $0, -36( )

AN Tovsd a8 )

movsd -48( ),

+ callqg _ Z7sqrt583d
‘ movq , —24( )

Fetch |callon Instructions movq . 32(%rbp)
— movq —24( ),
Decode |movsd — subq  #-32(%rbp)

R Read |movsd

sqrt58% ovsd  LoPTo 0C o).

Execute [movl - novsd . —16(%rbp)
. = movsd , —24( )
R Write |movsd — Data Tova 0, 320700
+ - cmpq $32, —32( )
T [Hae LBBO_6
movsd  LCPIQ 1( ),
| | | | | | | | | | | movsd  LCPIOQ_3( ),

movabsq $-9223372036854,
movsd  —24( ),
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main

Function Call AT—Y

movsd  LCPI1_0( ),
mov L $0, -36( )

AN Tovsd a8 )

. movsd  —48( )y
} + callqg _ Z7sqrt583d
—_ - movq , —24( )
— Fetch |movg + structions movg , =32(%rbp)
—_ — movq -24( ),
— Decode [callg = subq  *-32(%rbp)
— R Read |movsd — —
- = sqrt583 [Tovsa  LcPTe o( ),
— Execute |movsd — — 160 00)
-~ . = movsd , —24( )
= R Write |movl — Data o
+ - cmpq $32, —32( )
T [Gee LBBO_6
movsd  LCPIO_1( ),
W movsd LCPIOQ_3( ),
movabsq $-9223372036854,
movsd  —24( ),
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Function Call mair T ses,

movsd  LCPI1_0( ),
mov L $0, -36( )

AN Tovsd a8 )

movsd -48( ),

+ callqg _ Z7sqrt583d
‘ movq , —24( )

Fetch movq* ' | | Movq » —32(%rbp)
— movq -24( ),
Decode [movqg — Subq  *=32(%rbp)

R Read |[callg

= sqrt58% [ovsa  Lepte o),
Execute movsd = movsd , —16( )
\ — movsd , —24( )

R Write |[movsd — Data o

+ - cmpq $32, —32( )

T [Gee LBBO_6

movsd  LCPIO_1( ),

l l l l l l l l l l l movsd  LCPIQ_3( ),
movabsq $-9223372036854,

movsd  —24( ),

Pacific Northwest
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main

Function Call AT—Y

movsd  LCPI1_0( ),
mov L $0, -36( )

AN Tovsd a8 )

. movsd  —48( ),
} + callqg _ Z7sqrt583d
—_ - movq , —24( )
- Fetch [movg sf—F=- @:s’cructlons mov . —32(%0p)
—_ — S — movq -24( ),
— Decode | movq — subg  %=32(%rbp)
= R Read |"°V¢ =
— — sart583 [Toved  LcPTo o(rin),
— Execute [callqg = novsd . —16(% b))
—_ - = movsd -24( )
— movsd -
= R erte - Data movq $0, -32( )
+ - cmpq $32, —32( )
T [Gee LBBO_6
movsd  LCPIQ 1( ),
| | | | | | | | | | | movsd  LCPIQ_3( ),
movabsq $-9223372036854,
movsd  —24( ),
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Function Call But we just fetched | ™| [ _ses,

movsd  LCPI1_0( ),

instructions in order TovT 50, 360500
LLLL L ovsd —28 000

movsd -48( ),

+ callqg _ Z7sqrt583d
‘ movq , —24( )

— Fetch subqg = Instructions movq  =32(%rbp)
—_ — movq -24( ),

— Decode | movqg subq  #-32(%rbp)

— R Read | movag

_ sqrt58% ovsd  LoPTo 0( o).

Execute ImOVq 1 / movsd , —16( )
. movsd , —24( )
R Write / callqg Data > TS 530 )
+ cmpq $32, -32( )

jae LBBO_6
movsd  LCPIQ 1( ),

movabsq $-9223372036854,

instruction after callg

These are all wrong

IWWVANCED COMPUTING
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Function Call mair T ses,

Flush the pipeline movsd  LCPII_0(%ri0),
mov 1 $0, -36( )
AR ) Tovsd —Z80)
- movsd — —48( )
} + callqg _ Z7sqrt583d

Fetch <

movq -24( ),

/I . movq , —24( )
\Irl]structlons movg , —32(%1bp)

— Decode subg  %=32(%rbp)
— R Read
— sart583 [Toved  LcPTo o(rin),
— Execute / movsd , —16( )
— . movsd , —24( )
: R erte Data movq $0, -32( )
cmpq $32, -32( )
T [Jae LBBO_6
movsd  LCPIQ 1( ),
. . movsd  LCPIQ_3( ),
Thls IS the neXt movabsq $-9223372036854,
instruction after callq movsd —24T%rbp],
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. main
Function Call suba_$64,
movsd  LCPI1_0( ),
mov L $0, -36( )
LIl movsd , ~48(%10D)
. movsd  —48( ),
} + callqg _ Z7sqrt583d
—_ - movq , —24( )
— Fetch movseH Instructions movq , —32(%rbp)
— movq -24( ),
—_ Decode subgq *-32( )
— R Read i
— sqr 3 movsd  LCPIO_O( ),
— Execute / movsd , —16( )
— . movsd , —24( )
: R erte Data movq $0, -32( )
cmpq $32, -32( )
jae LBBO_6
movsd LCPIO_1( ),
. . movsd  LCPIO_3( ),
Thls 1S the neXt movabsq $-9223372036854,
instruction after callq movsd  -24(%rbp],
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Function Call mair T ses,

movsd  LCPI1_0( ),
mov L $0, -36( )

AN Toved A8
. movsd  —48( ),
+ callqg _ Z7sqrt583d
‘ movq , —24( )
Fetch | movsdd Instructions movg . —32(%70p)
movq -24( ),

Decode |movsd subq  #-32(%rbp)

R Read

movsd  LCPIO_O( ),
Execute movsd , —16( )
. movsd , —24( )

R erte Data movq $0, -32( )

cmpq $32, -32( )

T [Jae LBBO_6

movsd  LCPIQ 1( ),

. . movsd  LCPIQ_3( ),
Thls IS the neXt movabsq $-9223372036854,

instruction after callq movsd  -24T%rbp},

NORTHWEST INSTITUTE for ADVANCED COMPUTING
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Function Call mair T ses,

movsd  LCPI1_0( ),
mov L $0, -36( )

AN Toved A8
. movsd  —48( ),
+ callqg _ Z7sqrt583d
‘ movq , —24( )
Fetch | movsdd Instructions movg . —32(%70p)
movq -24( ),

Decode [movsd
R Read |movsd
Execute
R Write

subq *-32( )

sqrt58:

movsd  LCPIO_0( ),
movsd , —16( )
movsd , —24( )
movq $0, -32( )
cmpq $32, -32( )
jae LBBO_6

movsd  LCPIO_1( ),
movsd  LCPIO_3( ),

This is the next ovabsq $-9223372036854,
instruction after callg moved  —24(vrbpd,

/>
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Function Call mair T ses,

movsd  LCPI1_0( ),
mov L $0, -36( )

AN Toved 28000
. movsd  —48( ),
+ callqg _ Z7sqrt583d
‘ movq , —24( )
Fetch [movg Instructions movg . —32(%10p)
movq -24( ),

Decode [movsd
R Read |movsd
Execute [movsd
R Write

subq *-32( )

sqrt58% [ousa  Lcpte (o),

/ [movsd , —16( )
movsd , —24( )
~ | movq $0, -32( )
cmpq $32, -32( )
jae LBBO_6

movsd  LCPIO_1( ),
movsd  LCPIO_3( ),

This is the next ovabsq $-9223372036854,
instruction after callg moved  —24(vrbpd,

NORTHWEST INSTITUTE for ADVANCED COMPUTING
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Function Call

— Fetch cmtq ~
— Decode |[movg
— R Read |movsd
— Execute |movsd
— R Write

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

matr subq $64,
movsd  LCPI1_0( ),
mov L $0, -36( )
movsd , —48( )
. movsd  —48( )y
callqg _ Z7sqrt583d
movq , —24( )
Instructions movg , —32(%10p)
movq —24( ),
subq *-32( )
sqrt583 [Tovsa  LcPTe o( ),
/ movsd , —16( )
movsd , —24( )
movq $0, -32( )
N | cmpq $32, -32( )
jae LBBO_6
movsd  LCPIQ_1( ),
R movsd  LCPIO 3(- ),
Thls 15 the neXt movabsq $-9223372036854,
instruction after callg movsd  ~24(rbp),
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Function Call mair T ses,

movsd  LCPI1_0( ),
mov L $0, -36( )

AN Toved 28000
. movsd  —48( ),
+ callqg _ Z7sqrt583d
‘ movq , —24( )
Fetch jae o Instructions movg . —32(%70p)
movq -24( ),

Decode |cmpq

R Read | movq
Execute |movsd
R Write

subq *-32( )

sqrt58% [ousa  Lcpte (o),

/ [movsd , —16( )
movsd , —24( )
movq $0, -32( )
cmpq $32, -32( )
N | jae LBBO_6

movsd  LCPIO_1( ),
movsd  LCPIO_3( ),

This is the next ovabsq $-9223372036854,
instruction after callg moved  —24(vrbpd,

NORTHWEST INSTITUTE for ADVANCED COMPUTING
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Pipeline flush: Bad

R

v

Fetch

]
-

Decode

R Read

Execute

R Write

NORTHWEST INSTITUTE for ADVANCED COMPUTING
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This is the next
instruction after callg
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mair]
Flush the pipeline
<r}structions
sqrt58%

subq $64,

movsd  LCPI1_0( ),
mov L $0, -36( )
movsd , —48( )
movsd -48( ),

callqg _ Z7sqrt583d
movq , —24( )
movq , —32( )
movq -24( ),

subq *-32( )

movsd  LCPIO_0( ),
movsd , —16( )
movsd , —24( )
movq $0, -32( )
cmpq $32, -32( )
jae LBBO_6

movsd  LCPIOQ_1( ),
movsd  LCPIQ_3( ),
movabsq $-9223372036854,
movsd  —24( ),

Pacific Northwest
NATIONAL LABOI
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Memory Access The next one may

What are typical costs for accessing memory? be cheaper
What is typical clock cycle time? /
How many clock cycles to fetch an instruction? | 200
How many clock cycles to execute load / store instruction? |40

CPI for load / store? L Fetch

600 — — <n%,tructions |
Clock — CPU — Memory
e LML - 4 [
HEBERRR
> | Load/Store
cycle
0.5 ns 100 ns

NORTHWEST INSTITUTE for ADVANCED COMPUTING ~ W
./ Pacific Northwest :

55 AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY o

Opevated by Bamcse [ f
e TS gt of Enirgy WASHINGTON



Memory Access Costs

« Access to main memory has huge impact on performance

} Fetch 11
- Fetch |7 u 12
— Decode 16 — 13
— R Read 15 —
1| [Bewe] 1w |F D!
Clock — XeC%J e - D2
o LML - R erlte 13 Load/Store
> e TTTTTTTT]
cycle

NORTHWEST INSTITUTE for ADVANCED COMPUTING
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Memory Access Costs

« Access to main memory has huge impact on performance
« Latency: How long does the first access to data take

« Bandwidth: How much data can we continuously fetch
LIl llld

} Fetch 11
1] e - E
— Decode — 13
— R Read 1 —
1| [Een - !
Clock — XeC%J e - D2
o LML - ] R erlte Load/Store
> e TTTTTTTT]
cycle

NORTHWEST INSTITUTE for ADVANCED COMPUTING
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Memory Access Costs

« Access to main memory has huge impact on performance (600X)
* Processor would be idle almost all the time

—+ Fetch 1
1| [ - E
— Decode [ I3
- R Read —
] Execute - D1
Clock — : — D2
o LML RVVIrlte B Load/Store
"C'ycl'e“ ERRERERER

NORTHWEST INSTITUTE for ADVANCED COMPUTING
P e v
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Cache

L Small memory
near FDE unit

~N

} Fetch / Fetch 1
7| [Feeh_] <fosfuetons - st ] | |2
Decode — 13

Very very fast —

y Y . R Read Cache | [C
(and eXpenswe) Execute — D1
_ — D2

ﬂ”te\Load/Store Load/Store
Clock 0.5 ns 100 ns
> e
cycle

NORTHWEST INSTITUTE for ADVANCED COMPUTING
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Hierarchical Memory

Registers

(immediately fast) |

Level 1 Cache
LL1l (very very fast)

)

N

Fetch
|_1 /

H<(m|3|o|N|e

% [

: o W |E

r2 L2 | C

r4 (D) —

5 Load/Store \
0.5ns 5ns

NORTHWEST INSTITUTE for ADVANCED COMPUTING
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Separate L1 for
instuctions/data

N\

/\

/

Fetch B

Instructions |

5

Load/Store

100 ns

Level 2 Cache
(pretty fast)
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Hierarchical Memor) There is also an Data goes from L2
Ll MMU and TLB to L1
FDE works with
data in registers \ / /
| + = Fetch J A /_ Fetch 11
Data goes from L1 { E_ r1 (1 - @Str“c“o”s | :i
to registers 0| [R “"i"\ L2 | E S
- r — 1
31 [E] b = D2
] \:V (5 Load/Store B Load/Store
Clock
o LML - 0.5 ns > ns el
> |-
cycle

Data goes from
main memory to L2

NORTHWEST INSTITUTE for ADVANCED COMPUTING
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Cache and Multicore Separate L1 and L2
for each core
NENNNEEEEY
Cores work on Y Fetch /
0 L1 Shared L3
separate register ||| (= [T ()
sets and instrs Rl 2 || 1
B E Z L1 B Fetch 11
— W (D) — 12
Cores workon | [ [r5 | LoadStore | E =
separate register [ ¥ — Fetch -
- L1 — D1
sets and instrs |4 | L [T (I - D2
N 2 r2 Lo B Load/Store /
Clock r3
o ML - E L1 /
> |e W :: Load/Store (D) . .
cycle | Main memory is shared
ITTTTTTTT]

NORTHWEST INSTITUTE for ADVANCED COMPUTING

o T AT ! 27
igh- ientifi i i ERSITY o
AMATH 483/5.83 ngh Performance Scientific Computmg Spring 2019 : Pty Ot e UANg\lI‘{INIGT'IY'O{\I
University of Washington by Andrew Lumsdaine )



Performance

Highest
performance
with data here

/

/
—grn:UD'n<—|

ro

r1

r2

r3

r4

r5

performance
with data here

Higher

/

Fetch

I

(1)

Load/Store

L1
(D)

L2

Fetch B

@tructions | 12
13

5

Load/Store

/

Not so good
performance

NORTHWEST INSTITUTE for ADVANCED COMPUTING
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Locality — Performance

Keep as much

Keep as much
data here as
possible

/

NORTHWEST INSTITUTE for ADVANCED COMPUTING
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/
—gm:UD'n<—|

ro

r1

r2

r3

r4

r5

K much
LIl €ep as muc data here as
data here as .
_ possible
possible
| L Fetch 11
Fetch L1 A L >
(1) — @structions |
— 13
L2 | C
B = 2l
o) = D2
Load/Store Load/Store

University of Washington by Andrew Lumsdaine
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ity —
Locality — Strategy it isin Lo
||| We first look for || (hit), copy to L1 Can data be
it here (L1) missing from
If we need an / main memory?
operand here |[> ,'
_+ Fetch Fetch f1
3| [ () = @tructlons | -
— re L2 —
— R -
— r3 — D1
N E ,(L[;) — Dp
— \1V s Load/Store / \\_ Load/Store l
Clock F : 1
o LT - If it is there the:ZI?n:]Z;) If itis notin L2,
—>C|yclle<— (hit), load : ' || get from main
BERE B look in L2 memory

NORTHWEST INSTITUTE for ADVANCED COMPUTING
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Locality — Strategy

|| We want it to be | Or here
When we need here
the next '
operan d | j 0 Fetch L1 , Fetch 1
m g r1 (1) 1E @structions | 12
0| L2 — 13
| [rR] -2 L2 |
3| [w] 12 (L[;) — D2
| r5 Load/Store Load/Store
Clock
e LML - On a miss, copy
_T;'ydl:_ the data we want
RERRRRRL and its neighbors

NORTHWEST INSTITUTE for ADVANCED COMPUTING
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Locality — Strategy

Near in time
LI IILLIL]] (temporal locality):
The next the next operandisa | '
operand may be N _ / previous operand
near” the last I3 _ - L/ i Fetch P
— F - . 12
e L L r1 -w (1) [ <lnstructions |
It could be /42 > L |E < 13
“near” in time (=13 “‘m» = “‘m&* D1 )
- or space \Ev 4 (LD) \ _ b2
o |15 | toadStore \\ Near in space (spatial
oC . .
e ML - locality): the next operanq IS
> | in @ nearby memory location
oyele [TTTTTTTT] to a previous operand

NORTHWEST INSTITUTE for ADVANCED COMPUTING
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Locality — Performance

« Caches are much smaller than main memory. How do we decide what
data to keep in cache to effect higher performance (more accesses)?

 Temporal Locality: if a program accesses a memory location, there
Is a much higher than random probability that the same location will
be accessed again
— Cache replacement policies attempt to keep cached elements in the cache for

as long as possible

« Spatial Locality: if a program accesses a memory location, there is a
much higher than random probability that nearby locations will also be
accessed (soon)

— Cache policies read contiguous chunks of data — a referenced element and its
neighbors — not just single elements
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Matrix Vector Product

+ Recall for ANN 2t = S(Wix?) 2T =W x 2t | num cols()
N—1
* Ingeneral y<« AXux yi= Y Ayzj, i=0,...,M
2=0 /
summation | MTwo nested
num_rows()

loops
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for (size_t i 50; i < A.num_rows(); ++i) { H
for (sizeZt j = 0; j < A.num_cols(); ++j) { —— | ow many
y(i) += AGL, §) * x(§); flops?
+ :
} \ How many times | How much
is this done? data?
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Matrix-matrix product

K—1 Three nested
Cz'j = Z Aszk:] Ioops
k=0

for (size_t 1 = 0; i < C.num_rows(); ++i) {
for (size_t j = 0; j < C.num_cols(); ++j) {
for (size_t k = 0; k < A.num_cols(); ++k) {

C(i, j) += AL, k) * Bk, j); — | Howmany
+ flops?
} \ How many times
t is this done?

How much
data?
Pacific Northwést /
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Timing and Benchmarking

 Humans have pathological need to see who is better at everything
« But ordering requires a single number corresponding to “goodness”
« Which is impossible of course

« So we take one task and turn that into the definition of goodness (cf IQ)
— (Whatis 1Q? It's the thing that the 1Q test measures.) — My personal rant

* |In HPC, we take performance on a particular computational task to
rank the worlds computers with the 500 best scores on this task
— Linear system solution — matrix matrix product at the core
— Performance = FLOPS = (Total computations) / (Time to compute)
— Linpack — 2N?3/ (Time to compute)
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Timing a Program

* The time program in Linux (Unix) will measure time resources a

pProcess uses

|

Elapsed Wall
Clock time

($ time 1s -1R /iii/i/igfyjﬂﬂijj

real Om0.464s ————————____,,,——
user OmO0.080s

Time Spent
running user code

This is what we’ll
be using

| 8ys OmO.SSOs.___________ﬁ=___l_

Time Spent running
system code

N
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C++ Timer —
And this will be

provided to you

class Timer { — |
private:
typedef std::chrono::time_point<std::chrono::system_clock> time_t;

public: All you need to
Timer() : startTime(), stopTime() {2} wWorry about

time_t start() |{ return (startTime = std::chrono::system_clock: :now()); }
time_t stop() { return (stopTime = std::chrono::system_clock::now()); }
double elapsed() [{ return
Std: .chrono: :duration_cast<std::chrono::milliseconds>(stopTime-startTime).count(); }

private:
time_t startTime, stopTime;

+;
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Measuring Matrix Matrix Product Insufficient

#include <iostream> resolution
#include "Matriz.hpp" - N
#include "Timer.hpp" $ ./a.out
using namespace std; Declare Timer T N Elapsed
int main() { 8 0
cout << "N\tElapsed" << endl; .
P Start Timer T 16 0
for (int N = &; N < 1024; N *= 2) 32 0
Matrix AU, N), B(N, N), CQiN), D(N, N); 64 o)
Timer T; T.start(); 128 2
e | 256 28
. Stop Timer T
T.5%0p() P 512 315 |
cout << M\ << "\t" << T.elapsed() << endl;
} N
And??? \\\\

‘ return 0; Print Elapsed Time —
} f PaCi'ﬁS—oNNorthweAsTng [ 2
74 y / P a0 s WASHINGTON




What All Are We Timing Allocating a

Matrix operator*(consf}?&;;ix&/ﬁj uuﬂﬂetﬂiu;LJ& B) £
Matrix C(A.num_rows (9 B.num_colsf+——— /’}Veveraﬂocate ﬁ\\
zeroize(C) ; Zeroing it
for (size_t i = 0; i < A.num_rows out

for (size_t j = 0; j < B.num_cols(); ++j ) { i _
for (size t k = 0; k < A.num_cols(); ++k ) kcrltlca sections

new memory in
performance

C(i, j) += A(i, k) * Bk, j); of code )
+
} . The actual
} matrix product
return C;
+
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Just For Benchmarking

+

void multiply(const Matrix& A, const Matrix&B, Ma

Matrix operator*(const Matrix& A, const Matrix&B) {

Matrix C(A.num_rows(), B.num_cols());
zeroizeMatrix(C) ;

multiply (A, B, C);

return C;

for (size_t i = 0; i < A.num_rows(); ++i) {
for (size_t j = 0; j < B.num_cols(); ++j) {
for (size_t k = 0; k < A.num_cols(); ++k) {
C(i,j) += A(i,k) * B(k,j);

C++ Core Guideline

/ Violation
rix&C) {

F.20: For "out" output
values, prefer return
values to output
parameters

AMATH 483/563 High-Performance Scientific Computing Spring 2019
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Benchmarking

double benchmark(int M, int N, int K, long numruns) {
Matrix AM, K), B(K, N), C(M, N);

Timer T: Run the core loop
T.start(); many times to get
for (int i = 0; i < numruns; ++i)% sufficient resolution for
} multiply(A, B, C); small(er) sizes
T.stopQ);

return T.elapsed();
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Bonus Question (Advanced Topic)

double benchmark(int M, int N, int K, long n If we have different

Matrix A(M, K), B(K, M), c(M, N); — | multiply routines (and

we will), how many of

Timer T; these do we write?

T.start();

for (int i = 0; i < numruns; ++i) {
multiply(A, B, C);

} T By how much

T.stop(); do they differ?

T How can we

parameterize that?

return T.elapsed();

NORTHWEST INSTITUTE for ADVANCED COMPUTING 7
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Bonus Question (Advanced Topic)

double benchmark(int M, int N, int K, long n1 We want to
<something> f) { — pass in
Matrix A(M, K), B(X, N), C(M, N);

something
Timer T; |
T.start(): Double bonus: It
for (int i = 0; i < numruns; ++i) { just needs an
£(A, B, O); / operator()()
} | That we call
T.stop(); like a function /
return T.elapsed(); Let S not get
} carried away

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 ‘ e ‘ UNIVERSITY of
. . . N for the LS. Dey of Energy WASHINGTON
University of Washington by Andrew Lumsdaine



Functions as Data And takes two const

s 3 functi Matrix& and a
#include < te 1> S da Tunction .

wnclude <functiona Matrix& for args
double benchm (int M, int N, int K, g numruns,

function<void (const Matrix&, const Matrixé&, Matrix&)>f}~{\\\

— Parameter f
Matrix A(M, K), B(K, ~C (M, N); That returns

Timer T; VOid
T.start(); Like multiply()
for (int i = 0; i < numruns; ++i) { P
f(A, B, C); {/////
}
T.stop(); void multiply(const Matrix& A, const Matrix&B, Matrix&C) ;

return T.elapsed();

AMATH 483/583 High-Performance Scientific Computing Spring 2019
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Functions as Data (Advanced)

) And taking two
Functions :
returning void const Matrix& and a
— .
void multiply(const Matrix& A, const Matrix &B, Matri)c&/cr Matrix& for args

void multiply_2(const Matrix& A, const Matrix &B, Matrix& C);
void yet_another(const Matrix& A, const Matrix &B, Matrix& C);

/) Pass them into

double tl1 = benchmark(100, 100, 100, multiply); - another function
double t2 = benchmark(100, 100, 100, multiply_2);
benchmark (100, 100, 100, yet_another);

double t2

NORTHWEST INSTITUTE for ADVANCED COMPUTING
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Let’s Start Benchmarking

Matrix A(M, K), B(X, N), C(M, N);

Timer T;

T.start();

for (int i = 0; i < numruns; ++i) {
multiply(A, B, C);

}

T.stopQ;

return T.elapsed();

double benchmark(int M, int N, int K, long numruns) {

NORTHWEST INSTITUTE for ADVANCED COMPUTING
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bench: bench.o Matrix.o
c++ -std=c++11 bench.o Matrix.o -o bench

bench.o: bench.cpp Matrix.hpp
c++ -std=c++11 -c bench.cpp -o bench.o

Matrix.o: Matrix.cpp Matrix.hpp
c++ -std=c++11 -c Matrix.cpp -o Matrix.o

~
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Base Performance Results

Matrix Matrix Product Performance

GFlops
w

8 16 32 64 128 256 512 1024 2048
Matrix Dimension

NORTHWEST INSTITUTE for ADVANCED COMPUTING \7’/ 'W'
Pac'rﬁgNorthwest /

IONAL LABORATORY

R . - . . UNIVERSITY of
AMATH 483/583 High-Performance Scientific Computing Spring 2019 WASHINGTON

83 University of Washington by Andrew Lumsdaine



Let’s Make One Small Change

double benchmark(int M, int N, int K, long numruns) {
Matrix A(M, K), B(K, N), C(M, N);

Tell the compiler to
Timer T; L .
T.start(); use optimization
for (int i = 0; i < numruns; ++i) {
multiply (A, B, C); / level 3
} Z
T.stop(Q); (;ench: nch.o Matrix.o h

c++ -03 -std=c++11 bench.o Matrix.o -o bench
return T.elapsed();

¥ bench.o: bench.cpp Matrix.hpp
c++ -03 -std=c++11 -c bench.cpp -o bench.o

Matrix.o: Matrix.cpp Matrix.hpp
ct+ -03 -std=c++11 -c Matrix.cpp -o Matrix.o
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Base Performance Results

Matrix Matrix Product Performance

6
— 00
— 03
5t |
4t |
8
o 31 |
G

8 16 32 64 128 256 512 1024 2048
Matrix Dimension
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The Three Most Important Requirements for HPC

« Locality
« Locality
« Locality
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Locality -> Performance

« Caches are much smaller than main memory. How do we decide what
data to keep in cache to effect higher performance (more accesses)?

 Temporal Locality: if a program accesses a memory location, there
Is a much higher than random probability that the same location will
be accessed again
— Cache replacement policies attempt to keep cached elements in the cache for

as long as possible

« Spatial Locality: if a program accesses a memory location, there is a
much higher than random probability that nearby locations will also be
accessed (soon)

— Cache policies read contiguous chunks of data — a referenced element and its
neighbors — not just single elements
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Improving Locality

Consider each step of inner loop
for (int 1 = 0; 1 < M; ++1)
for (int j = 0; j < N; ++7)
for (int k = 0; k < K; ++k)
« Load C (i, j) into register C(i,j) += A(i,k) = B(k,3);
« Load A (i, k) into register I
 Load B (k, J) into register

* Multiply What can be

© Add reused?
« Storec (i, J)

* Four memory operations and two floating point operations per iteration
» 1/3 flop per cycle (if each operation is one cycle)
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ImprOVing Locality void multiply(const Matrix& A, const Matrix&B, Matrix&C) {

for (size_t i = 0; i < A.num_rows(); ++i) {
for (size_t j = 0; j < B.num_cols(); ++j) {
for (size_ k = 0; k < A.num_cols(); ++k) {
C(i,j) += AGi,k) * B(k,j);

}
} } |
 Load C (i, j) into register | !
« Load A (i, k) into register What can be
« Load B (k, j) into register reused?
« Multiply
« Add

e Store C(i, Jj)

* Four memory operations and two floating point operations per iteration
« 2/6 = 1/3 flop per cycle (if each operation is one cycle)
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Hoisting
void multiply(const Matrix& A, const Matrix&B, Matrix&C) {
for (size_t i = 0; i < A.num_rows(); ++i) {
~\\\\\\for (size_t j = 0; j < B.num_cols(); ++j) {
double t = C(i,j);
for (size_t k = 0; k < A.num_cols(); ++k) {
t += A(i,k) * B(k,j);

Hoist C(i,) |—

}
e Load A (i, k) C(i,j) = t;
« Load B (k, J) }
. Multiply ]
« Add

« Two memory operations and two floating point operations per iteration
« 2/4 =1/2 flop per cycle (if each operation is one cycle)
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Order of Operations

[
L

| IE ;|
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Order of Operations

C(i,j)

J

\—

A(i,k)

B(k, j)
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Order of Operations How many
times is each How many
. row used? times is each
C(i,]) : A(i,k) column used?

(T |

%
|
_ X
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Reuse: How Many Times Are Data Reused?

C(i,j)||CCL,3+1) || AGi+1,k) ||A(i,k)

[k B(k,j)

C(i+1,3) C(i+1,j+1)| —

used twice
NORTHWEST INSTITUTE for ADVANCED COMPUTING
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Improving Locality: Unroll and J B(k) is
)
void tiledMultiply2x2(const Matrix& A, const Matrix used twice
for (size_t i = 0; i < A.num_rows(); i += 2) {
for (size_t j = 0; j < B.num_cols(); j {
for (size_t k = 0; k < A.num_cols(); . .
CG , § ) +=AG , B B § ) B(k,j+1) is

C(i , j+1) += A(i , k) * j+1); used twice
C(i+1, J ) += A(i+1, k) * B(k, j 2 |
C(i+1/ j+1) += A(i+1, k) * B(k, j+1);

} \ A(i k) is

} Can also hoist A(i+1,k) is used twice
(independent of k) used twice

« Four memory operations and eight floating point operations per iteration
« 8/12 = 2/3 flop per cycle (if each operation is one cycle) — 2X the base case

NORTHWEST INSTITUTE for ADVANCED COMPUTING ¢
Pacific Northwest

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : P — | _UNIVERSITY,
University of Washington by Andrew Lumsdaine / g -




Example: Register Locality

Matrix Matrix Product Performance

6
— 00
— 03
5F — 2x2|
4l i
8
o3l |
G]

8 16 32 64 128 256 512 1024 2048
Matrix Dimension

W
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2by4

: Matrix Matrix Product Performance
— 00
— 03
5F — 2x2|
— 2x4
4,

8 16 32 64 128 256 512 1024 2048
Matrix Dimension
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4 by 2

: M‘atrix Mgtrix Prqduct Performange
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4 by 4

Matrix Matrix Product Performance

6
— 00
— 03
5¢ — 2x2|7
— 2x4
— 4x2
A4 4x4 |

8 16 32 64 128 256 512 1024 2048
Matrix Dimension
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Tiling and Hoisting

void hoistedTiledMultiply2x2(const Matrix& A, const Matrix&B, Matrix&C) {
for (size_t i = 0; i < A.num_rows(); i += 2) {
for (size_t j = 0; j < B.num_cols(); j += 2) {

double t00 = C(i, j); double t01 = C(i, j+1);

double t10 = C(i+1,3j); double t11 = C(i+1,j+1);

for (size_t k = 0; k < A.num_cols(); ++k) { \\\
£00 += A(i , k) * B(k, j );
t01 += A1 , k) * B(k, j+1); . .
£10 += A(i+1, k) * B(k, ; ) : Hoist 2x2 tile
t1l += A(i+1, k) * B(k, j+1);

+
C(i, j) = t00; C(i, j+1) = t01;
C(i+1,j) = t10; C(i+1,j+1)

tl1;

NUKIHVWVESI INSIIIUIE jor AUVANLEU LUMFU IING
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Tiling and Hoisting

Matrix Matrix Product Performance

— 00

— 03

5¢ — 2x2 1

— 2x4

— 4x2
4x4

hoisted

GFlops

8 16 32 64 128 256 512 1024 2048
Matrix Dimension
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Improving Locality: Cache

« Large matrix problems won't fit completely into cache
« Use blocked algorithm — work with blocks that will fit into cache

Crj= Z ArxkBr
K

Coo Co1 Co2 Cos Ago Aot Ap2 Aps Boo By Boa Bos

Cho Ciy Ci2 Cis Aqp A Aqo Ars B B By, Bis
= X

Cao Con Cao Cas As Az Az Aos Bsg Boy Bas B3

Cso Csy C3 Css3 Asp Az Asp Ass Bs Bs; | Bs2 Bss

« Each product term fits completely, imQ gaghesand rupsat -highsperformance
« Cache misses amortized work with data
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Blocking and Tiling

const int blocksize =

for (size_t jj = 0;

for (size_t i =
for (size_t j
for (size_t

void blockedTiledMultiply2x2(const Matrix& A, const Matrix&B, Matrix&C) {

std: :min(A.num_rows(), 32);

for (size_t ii = 0; ii < A.num_rows(); ii += blocksize) {

jj < B.num_cols(); jj += blocksize)

for (size_t kk = 0; kk < A.num_cols(); kk += blocksize) {

ii; 1 < ii+blocksize; i += 2) {
= jj; j < jjtblocksize; j += 2) {
k = kk; k < kkt+blocksize; ++k

ci , j ) +=AE , k) =Bk, j );
Ci , j+1) += A , k) * B(k, j+1);
C(i+1, j ) += A(i+1, k) * B(k, j );
C(i+1, j+1) += A(i+1, k) * B(k, j+1);
+
}
+
+
+
+

Outer loops work

across blocks
(for each block)

Inner loops
work on blocks

AMATH 483/583 High-Performance Scientific Computing Spring 2019
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Blocking and Tiling and Hoisting

Matrix Matrix Product Performance
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GFlops
w

8 16 32 64 128 256 512 1024 2048
Matrix Dimension

NORTHWEST INSTITUTE for ADVANCED COMPUTING \V’/ 'W'
PacifigNorthwest /

IONAL LABORATORY

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : Pl ot I aicte #X;ﬁ{‘ﬁ'&'&&
University of Washington by Andrew Lumsdaine g -

104



Copying What else gets

pulled into cache What else gets

C(i,j) . A(i,k) . pulled into cache
\_‘7> \ B(k,j) .

e | e -
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Copying and Transpose

What else gets

pulled into cache What else gets

, pulled into cache
cli,j| . AL, k)
\
) i J —
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Copying and Blocking and Tiling

Matrix Matrix Product Performance

00
03
2X2
2x4
4x2
4x4

hoisted
blocked

blockhoisted
copyblocked N
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Blocking and Tiling and Hoisting and Copying

Matrix Matrix Product Performance

6
— 00
— 03
5t — 2x2 1
— 2Xx4
— 4x2 i
4 4x4 1
— hoisted
g, — blocked |
G — blockhoisted
— copyblocked N
2 — copyblockhoisted|
N

8 16 32 64 128 256 512 1024 2048
Matrix Dimension
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Recap

 Locality: Write software so hardware can leverage it
« Register locality (tiling / unroll and jam)

» Hoisting

« Blocking

« Copying / transpose multiply

* Always use —03 for release (not for debug)
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~N
Name ThIS Famous Person Any sufficiently advanced

Wi .ﬁ. m_"—
3 v "
iNY

technology is indistinguishable
from magic
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This Nearly Famous Person Says
™)

Optimizing compilers are
sufficiently advanced

r

technology )

And so are modern
microprocessors

But especially optimizing\ L

Magic: the power of
apparently influencing the
course of events by using
mysterious or supernatural

forces

~\

W,

compilers for modern
microprocessors )
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4 ™)
— Magic: the power of
apparently influencing the

course of events by using

Tuning How do we find |
the optimal

« Starting with base code combination?
« Various compiler optimizations help .

i _ _ mysterious or supernatural
 Tiling (which size) forces
« Blocking (what size) \. v
« What size works best for Tiling and Blocking together?

« What loop ordering? Matrix matrix product has six different

orderings? What block ordering? The answer will be

different for
« \What about when we add AVX, and threads, etc? different CPUs
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Finding the Sweet Spot And wrote a program
to generate different

« Exhaustive parameter space search multiply functions
— Tiling, Blocking, Compiler flags, AVX insWrdering
 Original project at UC Berkeley phiPAC (Bilmes et al)

* Further developed by Whaley’and Dongarra —~Automatically Tuned
Linear Algebra Subprograims (ATLAS)

— Recently honored with “test of time” award

This started as a The f:ompetltlon wa.s Students were the
to write fastest matrix-

final course project _ good kind of lazy
matrix product
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Thank you!
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Microprocessors

« Basic operation: read and execute program instructions stored in
memory

« Fundamental performance / efficiency metric: cycles per instruction
(CPI) also FLC Instructions

can only be i Fetch
- N
run in CPU I~ — <n%,tructions |
Transitions 4 cpu Memory
Clock — —
move data |—" — —
oo cpy | UL A/ - “‘m N\
throug > | VAR Load/Store Program
cycle [Data can only instructions
be operated and data

on in CPU
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Processor Core Instruction Handling

* A single instruction may require multiple steps from fetch to

completion

Clock

—»| |e
cycle

Program
instructions

. CPU Sends
Instruction
. address to
is returned
memory
L L] AW
} \ Fetch 11
Fetch - 12
Decode — 13
R Read — D1
Execute — Do
R erite B Load/Store
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Processor Core Instruction Handling

« By pipelining, multiple instructions can be executed at each clock

cycle | | | Fourth is
* Form of instruction-level parallelism fetched

I I I I

} / Fetch 11

— Fetch 14 u 12

: Decode 13 : 13

|| = < |

Clock — XeC%J e - D2
o LML - o RWIrlte B Load/Store

> | TTTTTTTT Previous
cycle . .
Instructions

move along
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