NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583
High Performance Scientific Computing

Lecture 4:
Data Abstraction, Classes and Objects, class Vector

Andrew Lumsdaine

Northwest Institute for Advanced Computing
Pacific Northwest National Laboratory
University of Washington

Seattle, WA

Overview

 Recap of Lecture 3
— Compilation
— Program organization
— Header files, source files
— make

 class Vector

NORTHWEST INSTITUTE for ADVANCED COMPUTING \’-7(/ W
Paciﬁf\:TNorthwest

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

IONAL LABORATORY
UNIVERSITY of

e U1, Dopetrantof Evargy WASHINGTON

HPC in the News

Cal Tech Assistant Professor (and
former MIT CS PhD student) Katie
Bouman with 5PB data used to
image the black hole.

NORTHWEST INSTITUTE for ADVANCED COMPUTING o f \7// W

Pacific Northwest
NATIONAI

L LABORATORY

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

——— % | UNIVERSITY of o
for the ULS. Deiartment of Energy WASHINGTON =

SC’19 Student Cluster Competition Call-Out!

» Teams work with advisor and vendor to design and build a cutting-edge,
commercially available cluster constrained by the 3000-watt power limit

« Cluster run a variety of HPC workflows, ranging from being limited by CPU
performance to being memory bandwidth limited to 1/O intensive

Teams are comprised of six undergrad or high-school students plus advisor
https://sc19.supercomputing.org
/program/studentssc/student-
cluster-competition/

Team Meetings
Mondays 5:30PM-8:00PM

NORTHWEST INSTITUTE for ADVANCED COMPUTING

[Pacific Northwest
100 NATIONAL LABORATORY

IIIIIIIIIIII
Proondly Operated by Basese
Jor the ULS. Department of Enengy

Procedural Abstraction: Functions

 F.2: A function should perform a single logical operation
 F.3: Keep functions short and simple

« F.16: For “in” parameters, pass cheaply-copied types by value and
others by reference to const

« F.17: For “in-out” parameters, pass by reference to non-const

o F.20: For “out” output values, prefer return values to output
parameters

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

NORTHWEST INSTITUTE for ADVANCED COMPUTING ~
Pacific Northwest

igh- ientifi i i . | UNIVERSITY o f
AMATH 483/§83 Hl|gh Performance Scientific Computmg Spring 2019 Pty Ot by Bacte R AILer
University of Washington by Andrew Lumsdaine

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

Refined program organization (in pictures)
Object file

// amath583.hpp: Declarations
double sqrt583(double) ;

double expt583(double, double);
double sin583(double, double);
VA

amath583.hpp compiler

amath583.cpp
compiler

main.cpp

#include <iostream> #include <cmath>
#include "amath583.hpp" #include "amathb83.hpp"

double sqrt583(double z) {
double x = 1.0;
for (size_t i = 0; i < 32; ++i) {
double dx = - (x*x-z) / (2.0%x) ;
x += dx;
if (abs(dx) < 1.e-9) break;

int main () {

std::cout << sqrtb583(42.0) << std::endl;

std::cout << expt583(42.0. pi) << std::endl;
std::cout << sinb83(42.0 * pi) << std::endl;
V/ARTY 3

l i a o Executable =g

University of Washington by Andrew Lumsdaine

Object file

UNIVERSITY of
WASHINGTON

Multifile Multistage Compilation

Compile main.cpp to
main.o object file

Tell the compiler to
generate object

/

S

/ .
$ c++ -c main.cpp -o main.o

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performa

Tell the compiler
name of the object

nce Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

$ c++ -c amathb83.cpp -o amathb83.0

$ c++ main.o amathb583.0 -o main.exe

UNIVERSITY o

4 bt
WASHINGTON 7

Multistage compilation (pictorially)

$ c++ -c main.cpp -o main.o

$ c++ -c main.cpp -o main.o

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

TORY

llllllllllll

Recompiling

If this changes

If this changes

Need to
compile again

\

Or if this
changes

Need to

compile again

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

llllllllllll

Dependencies

* main.o depends on main.cpp and amath583.hpp
« amath583.0 depends on amath583.cpp
 main.exe depends on amath583.0 and main.o

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 | : o UUUUUUUUUUU f %
; .) ; i WASHINGTON
University of Washington by Andrew Lumsdaine

Automating: The Rules

 |f main.o is newer than main.exe — recompile main.exe

 |[f amath583.0 is newer than main.exe — recompile main.exe

 If main.cpp is newer than main.o — recompile main.o

 |f amath583.cpp is newer than amath583.0 — recompile amath583.0
 |f amath583.hpp is newer than main.o — recompile main.o

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

W

UNIVERSITY o

f o)
WASHINGTON /)

11

Make

« Tool for automating compilation (or any other rule-driven tasks)
* Rules are specified in a makefile (usually named “Makefile”)

 Rules include main.exe: main.o amath583.0
— Dependency c++ main.o amath583.0 -o ny Dependencies
— Target main.o: main.cpp amath583.hpp
— Consequent ct++ —-Cc main.cpp -0 main.o —

Consequent

amathb583.0: amathb83.cpp
ct++ —-c amathb83.cpp -o amathb83.0

Target

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 8 oo | _uNiversiTY, A
University of Washington by Andrew Lumsdaine) cil s bl

Make

Tool for automating compilation (or any other rule-driven tasks)
Rules are specified in a makefile (usually named “Makefile”)
Rules include

$ make
— Dependency c++ -c main.cpp -o main.o
— Target c++ —-c amath583.cpp -o amath583.0
— Consequent c++ main.o amath583.0 -o main.exe

Edit amath583.hpp $ make

ct++ —-C main.cpp -0 main.o
c++ main.o amathb83.0 -0 main.exe

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 % T et [VUNIVERSITY of B
University of Washington by Andrew Lumsdaine v e ‘

Computational Science Find P that
P _—| satisfies this

V-P = fO in QO
[[P . No]] = [[tc]] on S()
Differential Eqns P-No = to on 0%, (too hard)
u = u, on 08,

Find x that

_—| satisfies this

(too hard)

[

discretize

Find x that
satisfies this

linearize

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 e A f
University of Washington by Andrew Lumsdaine | st e

Computational Science Factorization

« The fundamental computation at the ¢core of many (most/all)
computational science programs is“solving

Ar =b— A= LU—C < AX B
/

Matrix-matrix
. Assume z,b € RY and A € RNV product

« Solution process only requires basic arithmetic operations

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performan
University of Washington by Andrew Lumsdaine

o L ATON f
ce Scientific Computing Spring 2019 e —T UNIVERSITY o, f
for the US. Depuartment of Enengy WASHINGTON

Neural Network

s ‘\‘& V AN 2
NS EL) - NIRSS L NS
A2~ RN F2 2 XS,
AR /,,‘/l/;“‘\\):% @‘Cl/-* A7
NSO T AKX KL A SRS
S 7K QA ES7 A\ A
\.g ,’%«{,»éc»,;.{a‘)):,«,‘w V,w»,o@.:‘«,a @53./

O ! X WKL) Y WY
SXIEBRIXY ERX RS RN

S0 A O [0 TA YO A SO
NEEE K KSE SN ESAIET
T RIEK NS \~/ ST YEHESK Do \~/ ST XK XX
L RIFOKIK ESGFE XIS R HRRIA
CTXNRNKNT FZXRCARNKYT F2XAKRKY,
NELEL X NABLEL SIS ALY
Q\

'li"\ LI 205 628 O "l;' N
N\

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 ® e /| _UNIVERSITY, f
University of Washington by Andrew Lumsdaine LA e

Pacific Northwest
NATIONAL LABORATORY

Zoom In On One "Neuron”

Sigmosd functen

- A Theerhaly

-

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 j oty b UNIVERSITY of
. . . . for the US. Depuartment of Energy WASHINGTON
University of Washington by Andrew Lumsdaine

Zoom In On One "Neuron”

zy = o(t)

~
|

WoXo +W1T1 + - +W X

N-1
= E Wiy
i=0

N-1
ry = o Z Wi T;)
i=0

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : & j UNIVERSITY of
. . . . s Energy WASHINGTON
University of Washington by Andrew Lumsdaine

Zoom In On Two “Neurons”

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Enengy

UNIVERSITY of
WASHINGTON

Zoom In On Two “Neurons”

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Enengy

UNIVERSITY of
WASHINGTON

Zoom In On Two “Neurons”

NORTHWEST INSTITUTE for ADVANCED COMPUTING

W

UNIVERSITY of
WASHINGTON

Pacific Northwest
NATIONA ABORATORY

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : J e
University of Washington by Andrew Lumsdaine ot

21

Zoom In On Two “Neurons”

8
o

|
A
S
S
=

ZHr—‘
|

I
2
28
!
IS
N

NORTHWEST INSTITUTE for ADVANCED COMPUTING

W

[UNIVERSITY of
Energy WASHINGTON

AMATH 483/583 High-Performance Scientific Computing Spring 2019

22 University of Washington by Andrew Lumsdaine

Zoom In On Two “Neurons”

[

' = S(Wz)

|

vector

matrix

vector

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

¥ Energy

UNIVERSITY o

f
WASHINGTON

Zoom In On Two “Neurons”

When this How does More
changes? this change later

_—|Back Propagation

vt = S(Wz°)

\

Will still be based We want to find
on vector and “hast” W
matrix abstractions
and operations \
Need to compute
gradient

NORTHWEST INSTITUTE for ADVANCED COMPUTING

. L X N o NATIONA! RATORY f = &
AMATH 483/583 High-Performance Scientific Computing Spring 2019 . o UNIVERSITY o f v
. . . . o the LS nent of Energy WASHINGTON
University of Washington by Andrew Lumsdaine

Mathematical Vector Space

Definition. (Halmos) A vector space is a set V of elements called vectors satisfying the following axioms:

1. To every pair x and y of vectors in V' there corresponds a vector x + y called the 7um of x and y in

suh o way that | commutative associative We need to be able to
(a) addition is commutative, © +y =y + x
add 2 vectors - vector
(b) addition is associative, x + (y + 2) = (x +y) + 2

there exists in V' a unique vector 0 (called the origin) such that = 4+ 0 = x for ever vector x, and

2. To every pair a and x where a is a scalar and x is a vector in V', there coriesponds a vector axz in V'
called the product of @ and x in such a way that

Identity over +

(a) multiplication by scalars is associative a(bx) = (ab)z, and

-]
(b) 1z = z for every vector z. —| Identity over x —~ associative L distributive

3. (a) Multiplications by scalar is distributive with respect to vector addition. a(x + yJ # azx + ay

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : i ‘ UNIVERSITY of
. . . . for the ULS. Department of Energy WASHINGTON
University of Washington by Andrew Lumsdaine

Mathematical Vector Space Examples

Definition. (Halmos) A vector space is a set V of elements called vectors satisfying the following axioms:

1. To every pair x and y of vectors in V there corresponds a vector z + y called the sum of x and y in
such a way that
(a) addition is commutative, z +y =y +
(b) addition is associative, z + (y + z) = (z + y) + 2
(c) there exists in V' a unique vector 0 (called the origin) such that + 0 = x for ever vector x, and
(d) to every vector x in V there corresponds a unique vector —x such that z + (—z) =0

2. To every pair a and x where a is a scalar and z is a vector in V, there corresponds a vector ax in V'
called the product of a and z in such a way that

(a) multiplication by scalars is associative a(bz) = (ab)z, and

(b) 1z = z for every vector z. The VeCtor Space
3. (a) Multiplications by scalar is distributive with respect to vector addition. a(z + y) = ax + ay . . .

(b) multiplication by vetors is distributive with respect to scalar addition (a + b)z = ax + by u Se d | n S C | e nt | fl C
« Set of all complex numbers computing

« Set of all polynomials

« Set of all n-tuples of real numbers RN

W

NORTHWEST INSTITUTE for ADVANCED COMPUTING
UNIVERSITY of

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : ; j R AILer
University of Washington by Andrew Lumsdaine - b

26

Computer Representation of Vector Space

Definition. (Halmos) A vector space is a set V of elements called vectors satisfying the following axioms:

1. To every pair x and y of vectors in V' there corresponds a vector x + y called the 7um of x and y in

suh o way that | commutative associative We need to be able to
(a) addition is commutative, © +y =y + x
add 2 vectors - vector
(b) addition is associative, x + (y + 2) = (x +y) + 2

there exists in V' a unique vector 0 (called the origin) such that = 4+ 0 = x for ever vector x, and

2. To every pair a and x where a is a scalar and x is a vector in V', there coriesponds a vector axz in V'
called the product of @ and x in such a way that

Identity over +

(a) multiplication by scalars is associative a(bx) = (ab)z, and

(b) 1x = x for every vector x. — Identity over X — associative

distributive

3. (a) Multiplications by scalar is distributive with respect to vector addition. a(z g Ak

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : i ‘ UNIVERSITY of
. . . . for the ULS. Department of Energy WASHINGTON
University of Washington by Andrew Lumsdaine

Computer Representation of Vector Space

Definition. (Halmos) A vector space is a set V of elements called vectors satisfying the following axioms:

1. To every pair x and y of vectors in V' there corresponds a vector x + y called the 7um of x and y in

such a way that | .00 tative associative

(a) addition is commutative, r +vy =y + =

C++ does nothave [z+(y+2)=(z+y)+=
an n_tup|e type with hique vector 0 (called the origin) such that x + 0 = x for ever vector x, and

We need to be able to
add 2 vectors = vector

these properties / there corresponds a unique vector —z such thatj x + (—x) =0

2. To every plair a and = where a is a scalar and x is a vector in V', there coriesponds a vector axz in V'
called the product of @ and x in such a way that

Identity over +

/ scalars is associative a(bx) = (ab)z, and
Create our own ~

sy Vector 2. — | dentity over x [| associative

distributive

3. (a) Multiplications by scalar is distributive with respect to vector addition. a(z g Ak

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 j g ity Operated by . UNIVERSITY of
. . . . for the US. Depuartment of Energy WASHINGTON
University of Washington by Andrew Lumsdaine

Classes

 First principles: Abstraction, simplicity, consistent specification
« Domain: Scientific computing

 Domain abstractions: Matrices and vectors

 Programming abstractions: Matrix and Vector

« C++ classes enable encapsulation of related data and functions
« User-defined types

* Provides visible interface

* Hides implementation

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 @ - /' _UNIVERSITY, o
University of Washington by Andrew Lumsdaine] o "‘

std::vector<double>

Before rushing off to implement fancy interfaces
Understand what we are working with

And how hardware and software interact
std::vector<double> will be our storage

Hardware

But its interface won’t be our interface

— Doesn’t have associated arithmetic operations
— We will gradually build up to complete Vector
— And complete Matrix

Software

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performa
University of Washington by Andrew Lumsdaine

Pacific Northwest

. I . . 104 NATIONAL LABORATORY

nce Scientific Computing Spring 2019 5 /[UNIVERSITY o of
1

Proxwdly Operated by Batese
for the LS. Department of Ener

std:
std:
std:
std:

:set
:1list
map
:vector

NORTHWEST INSTITUTE for ADVANCED COMPUTING

ForwardlIterator
Reverselterator
RandomA ccesslterator

31

The Standard Template Library

* |n early-mid 90s Stepanov, Musser, Lee applied
principles of generic programming to C++

« Leveraged templates / parametric polymorphism

std:
std:
std:
std:

:for each
:sort

Elements of
raccumulate Programming
:min_element ——

Paul McJones

> ALEXANDER STEPANOV ¢

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Alexander Stepanov and Paul McJones.

2009. Elements of Programming (1st
ed.). Addison-Wesley Professional.

W

UNIVERSITY of)
WASHINGTON 1

Generic Programming

« Algorithms are generic (parametrically polymorphic)

« Algorithms can be used on any type that meets algorithmic reqts
— Valid expressions, associated types
— Not just std. ::types

Standard Library container

=

vector<double> arrary (N);

std::accumulate (array.begin (), array.end(), 0.0);

/ \ I

iterator iterator Initial value

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performan
University of Washington by Andrew Lumsdaine

: s : " 0 TIONAL L. ATO] = W

ce Scientific Computing Spring 2019 Opersted by UNIVERSITY o, f 5
o the ULS. Department of Energy WASHINGTON 1

b1

std Containers

 Note that all containers
have same interface

 (Actually a hierarchy,
we’ll come back to this)

« We will primarily be
focusing on vector

NORTHWEST INSTITUTE for ADVANCED

AMATH 483/583 High-Performance Scientific Computing Spring 2019

Headers <vector> <deque> <list>
Members vector deque list
constructor |vector deque list
operator= operator= operator= operator=
iterators begin begin begin begin
end end end end
Size size size size
capacity max_size max_size max_size max_size
empty empty empty empty
resize resize resize resize
front front front front
T ek bk bak bad
operator(] operator|] operator|]
insert insert insert insert
erase erase erase erase
modifiers push_back |push back |push back |push back
pop_back pop_back pop back pop back
swap swa swa swa

University of Washington by Andrew Lumsdaine

NATIONAL LABORATORY

Proxwdly Operated by Batese
for the LS. Department of Ener

UNIVERSITY of
WASHINGTON

http://www.cplusplus.com/%253cvector%253e
http://www.cplusplus.com/%253cdeque%253e
http://www.cplusplus.com/%253clist%253e
http://www.cplusplus.com/vector
http://www.cplusplus.com/deque
http://www.cplusplus.com/list
http://www.cplusplus.com/vector::vector
http://www.cplusplus.com/deque::deque
http://www.cplusplus.com/list::list
http://www.cplusplus.com/vector::operator=
http://www.cplusplus.com/deque::operator=
http://www.cplusplus.com/list::operator=
http://www.cplusplus.com/vector::begin
http://www.cplusplus.com/deque::begin
http://www.cplusplus.com/list::begin
http://www.cplusplus.com/vector::end
http://www.cplusplus.com/deque::end
http://www.cplusplus.com/list::end
http://www.cplusplus.com/vector::size
http://www.cplusplus.com/deque::size
http://www.cplusplus.com/list::size
http://www.cplusplus.com/vector::max_size
http://www.cplusplus.com/deque::max_size
http://www.cplusplus.com/list::max_size
http://www.cplusplus.com/vector::empty
http://www.cplusplus.com/deque::empty
http://www.cplusplus.com/list::empty
http://www.cplusplus.com/vector::resize
http://www.cplusplus.com/deque::resize
http://www.cplusplus.com/list::resize
http://www.cplusplus.com/vector::front
http://www.cplusplus.com/deque::front
http://www.cplusplus.com/list::front
http://www.cplusplus.com/vector::back
http://www.cplusplus.com/deque::back
http://www.cplusplus.com/list::back
http://www.cplusplus.com/vector::operator%255b%255d
http://www.cplusplus.com/deque::operator%255b%255d
http://www.cplusplus.com/vector::insert
http://www.cplusplus.com/deque::insert
http://www.cplusplus.com/list::insert
http://www.cplusplus.com/vector::erase
http://www.cplusplus.com/deque::erase
http://www.cplusplus.com/list::erase
http://www.cplusplus.com/vector::push_back
http://www.cplusplus.com/deque::push_back
http://www.cplusplus.com/list::push_back
http://www.cplusplus.com/vector::pop_back
http://www.cplusplus.com/deque::pop_back
http://www.cplusplus.com/list::pop_back
http://www.cplusplus.com/vector::swap
http://www.cplusplus.com/deque::swap
http://www.cplusplus.com/list::swap

std Containers

* std containers “contain” elements

vector of doubles

vector<double>array (N) ;

vector of ints

vector<in€> array (N);

_ list of vectors of complex doubles

list<vector<complex<double> > > thing;

* Implementation of list, vector, complex is the same regardless of what
Is being contained

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performan
University of Washington by Andrew Lumsdaine

o AT o | . =

ce Scientific Computing Spring 2019 wemse | _UNIVERSITYo f g
o the Lt ment of Energy WASHINGTON 1

P

Generic Programming

« Algorithms are generic (parametrically polymorphic)

« Algorithms can be used on any type that meets algorithmic reqts
— Valid expressions, associated types
— Not just std. ::types

Standard Library container

=

list<vector<complex<double> > > thing(N);

std::accumulate (thing.begin (), thing.end(Lk\g;Sli}

iterator iterator Initial value

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performan
University of Washington by Andrew Lumsdaine

: s : " 0 TIONAL L. ATO] = W

ce Scientific Computing Spring 2019 Opersted by UNIVERSITY o, f 5
o the ULS. Department of Energy WASHINGTON 1

b1

std Containers

* The std containers are class templates (not “template classes”)

template <typename T> class vector;
template <typename T> class dequeue;
template <typename T> class list;

[[T~

: The template
What follows is P . A class
a template parameter s a template
type placeholder
* Don’t need details for now vector<double>

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 8 y o 70 | _UNIVERSITY o f
University of Washington by Andrew Lumsdaine } i ==t

Our goal

« Extract maximal performance from one core, multiple cores, multiple
machines for computational (and data) science

« Two algorithms: matrix-matrix product, (sparse) matrix-vector product

Hardwar
AaB,CERNXN C:AXB OU:ZAWB]W ad are
k

Matrix A(M,N);

for (int i = 0; i <

for (int j = 0;
What does for (int k = 0; k < N; ++k)
the hard- — ¢(i,j) += AGi,k) * B(k,j) Software
ware do?

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

nnnnnnnnnn

Classes

 First principles: Abstraction, simplicity, consistent specification
« Domain: Scientific computing

 Domain abstractions: Matrices and vectors

 Programming abstractions: Matrix and Vector

« C++ classes enable encapsulation of related data and functions
« User-defined types

* Provides visible interface

* Hides implementation

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 @ - /' _UNIVERSITY, o
University of Washington by Andrew Lumsdaine] o "‘

Vector desiderata

- Mathematically we say let v € RY
 There are N real number elements
« Accessed with subscript

Declare (construct) a Vector
with num_rows elements

« (Vectors can be scaled, added)

* Programming abstraction
« Create a Vector with N elements
» Access elements with “subscript”

Access elements with

7

int pain() {
sife_t num_rows = 1024;

Vector v1(num_rows) ;

for (size_t i = 0; i < vl.num_rows(); ++i) {

vi(i) = i;

return O;

}

subscript (index)

AMATH 483/583 High-Performan

39

ce Scientific Computing Spring 2019

University of Washington by Andrew Lumsdaine

W

UNIVERSITY o

f
WASHINGTON

Pacific Northwest
NATIONAL LABORATORY

Proxwdly Operated by Batese
for the LS. Department of Energy

Anatomy of a C++ class Declares an

class Vector {
public:
Vector(size t M)

private:
size_t

+;

PE———— interface

Hides
implementation

num_rows_(M), storage_(num_rows_) {}
double& operator() (size_t i) { return storage_[i]; }

size_t num_rows() const { return num_rows_; }

num_Yrows_;

std: :vector<double> storage_;

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

C++ Core Guidelines related to classes

« C.1: Organize related data into structures (structs or classes)

« C.3: Represent the distinction between an interface and an
implementation using a class

« C.4: Make a function a member only if it needs direct access to the
representation of a class

« C.10: Prefer concrete types over class hierarchies
 C.11: Make concrete types reqular

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

NORTHWEST INSTITUTE for ADVANCED COMPUTING ~
Pacific Northwest

igh- ientifi i i . | UNIVERSITY o f
AMATH 483/§83 Hl|gh Performance Scientific Computmg Spring 2019 Pty Ot by Bacte R AILer
University of Washington by Andrew Lumsdaine)

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

Anatomy of Classes and Structs in C++

Declare our own type Name of our type

AN

class Vector {
size_t M;
std: :vector<double> storage_;

}- ~—| A vector hasits 1D
s / \\ storage object

] Compound Data Type
Groups together pieces pou yP
i Data Structure
of logically related data

. Record
(abstraction!)
NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 " e o R A g / [
foe the L rtment of Enengy 1

A vector has row size and
___— column size (M and N)

University of Washington by Andrew Lumsdaine WASHINGTON

d Stri{ If1declare something to be of
type Vector, | have instantiated
an object of type Vector

A class is a formula for
what an object will be

A vector has a number of /

size_t M;
rows (M) / Ctor A;yd::vector<doub1e> storage_;
}Lis Vector A Each Vector contains its
s1ze_t M; own data: its own M

/td: :vector<double> storage| sndits own storage

. VeCtor B ; Ziczi??\trel\c/léor<double> storage_
A vector has its 1D —J /

UV .)
storage object Any Vector has its size Each Vector contains
and data bound together its own data: M, and
as a single entity (object)) storage

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : - & ‘ UNIVERSITY of
. . . X foe o e of Kinegy WASHINGTON
University of Washington by Andrew Lumsdaine

Classes and Structs in C++ (Usage)

Vector |x; pize-t 1
std::vector<double> storage_;
class Vector {
Size—t M; VeCtor Y; z?iigﬂmwm>%u%a;
std:_ wvector<double> storage_;
}: Dot means evaluate _
the M belonging to x Write .ACtS J_USt
’ to it I|ke/a size_t
size_t foo = X/M; \ize_t foo = x.M;
y.M = 42; Read
Vector Data from it
object x Member M x.storage_[27] = 3.14;

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of)
WASHINGTON 1

o

Aside (Hygiene)

class Vector {
size_t M;

};\

#include <vector>

std: :vector<double> storage_;

N

Include declarations

Fully qualified type

Using the
std::vector class

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

f T ™
Recall core guideline: No
“using” statements in

kheader files

(Hygiene for code |
you are sharing

kW|th others)

UNIVERSITY of
WASHINGTON

Member Functions

Bundling together related data is deeper than just putting them
together into a single object for convenience

There are also invariants that need to be maintained
So we can't just let the user do whatever they want to the data
(And, again, we want to hide implementation from interface)

class Vector {
size_t M;
std: :vector<double> storage_;

+;

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

W

UNIVERSITY o

f o)
WASHINGTON /)

46

Invariants

* For example

Should always j And never

class Vector}/ be positive change (?)
size_t M;
std: :vector<double> storage_; :
). 2 Size must
always be M

» Things we can do with this interface that make no sense Vector x;

X is a vector, size()

size_t len = xX.storage_.size(); — ,
has no meaning

x.M = x.M

Can’t arbitrarily change
vector dimension

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 ? i o | _UNIVERsITY, A
University of Washington by Andrew Lumsdaine e

Member Functions: Interface vs Implementation
Member functions also

class Vector { /I bundled with classl Call the member
size_t num_rows(); Return number of function n.um_rows
| rows of vector on object x
size_t M; Vector x;
std: :vector<double> storage_;
}; size_t foo = x.num_rows();
: —— |_— x.num_rows() = 5;
Can still Returns a value in
access these this case gs.ee class Xize_t bar = num_rows (x) :
definition) /

Need to invoke as
member

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019

48 University of Washington by Andrew Lumsdaine

Interface vs Implementation

Anything public can be Cannot
class Vector { _——| accessed outside the access
public: . -

Vector(size t M) : ml___ SCOPE pf theocl=a§s s o Vector x: pr}vate data
size_t num_rows() c Anything private can size_t foo = x.num rowsx
only be accessed inside
private: : - .
. the scope of the class size_t bar = x.num_rows();
size_t
std: :vector<double> storage_; /
¥ Can call public
member

More Hygiene: Never
make member data public

function

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : . & j UNIVERSITY of
. . . . o the of Energy WASHINGTON
University of Washington by Andrew Lumsdaine

Interface and Implementation Vector scope Access
private data

« Convention: Interface in .hpp and Implementation in .¢pp
* (One pair per class)

Vector.hpp | ector.cpp |

#include <vector> #includ\ "Veqtor.hpp"
class Vector { size_t Vectmi::num_rows() {
public: return rum_rows_;

Vector(size_t M) : num_rows_(M), storage_(num_rows_) {2} }

. Vi

size_t num_rows () -msw,\
private:)

o num_ Tows. ; DeFIare member Implementation

std: :vector<double> storage_; function num_rows()
i

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : - & ‘ UNIVERSITY of
. . . X foe o e of Kinegy WASHINGTON
University of Washington by Andrew Lumsdaine

Interface and Implementation

« For short functions, you can put implementation in the header

* (Necessary for class and function templates)

#include <vector>

class Vector {
public:

size_t num_rows() const { return num_rows; }

private:
size_t num_rows_;
std: :vector<double> storage_;
I

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Vector.hpp

Vector(size_t M) : num_rows_(M), storage_(num_rows_) {}

nnnnnnnnnnnn

The Vector class so Far

Encapsulates vector data

Member data for dimensions (rows) and for storing elements
Member function to get number of rows

Separate interface and implementation via public / private

Three more things:

— How to bring a Vector into being (“constructors”)
— Function for getting vector data

— Function for setting vector data

« Bonus: Assignment and operator()

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

W

UNIVERSITY o

f o)
WASHINGTON /)

52

Constructors

 The C++ compiler “knows” about built-in types

 When a variable of a built-in type is declared, the compiler just needs
to allocate space for it

e C++ classes are user-defined

« Compiler can do its best (default constructor), but usually we need to
do more to create a well-defined object

« For example, a well-defined vector should be given its (positive)
dimension when it is created. (And the data initialized.)

NORTHWEST INSTITUTE for ADVANCED COMPUTING
Pacific Northwest

AMATH 483/583 High-Performance Scientific Computing Spring 2019 %/ e /| _UNIVERSITY, A
University of Washington by Andrew Lumsdaine T

Constructors

Built-in type, compiler

allocates known
amount of space

Vector x;

Compiler creates x with

Default constructor is
invoked when variable is
declared with no arguments

default constructor

Vector x(27); —— | Compiler creates x with | _~

specific constructor

In this case,
createsa 27/
element Vector

std::cout << "x is " << x.num_rows() << " in length." << std::cout;

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

Declaring Constructors

#include <vector> A constructor is
defined using the
class Vector { £ the ol
public: name ot the class
Vector();

eeter(sdme b 1) And then the arguments

| \ Can be overloaded (different
size_t num_rows() const I

functions distinguished by

private: argument types)

size_t num_rows_;

std: :vector<double> storage_; Where have we
s

already seen

overloading?
NORTHWEST INSTITUTE for ADVANCED COMPUTING vV

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : - : j UNIVERSITY of
. . . . rtment of Energy WASHINGTON
University of Washington by Andrew Lumsdaine

55

Defining Constructors

Vector.hpp Vector.cpp

#include <wvector> #include "Vector.hpp"

1 Vect]
S EEERE _» Vector: :Vector(size t M) {

public:
Vector(); num_rows_ = M;
Vector(size_t M); storage_ = std::vector<double>(num_rows) ;

+

size_t num_rows() const { return n

™ Vector: :Vector() {

private:
. num_rows_ = 1;
size_t num_rows_;
std: :vector<double> storage._; storage_ = std::vector<double>(num_rows_) ;
¥ }

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 :
University of Washington by Andrew Lumsdaine

N
IONAL
UNIVERSITY of

Pacific
NA W

= 2 WASHINGTON / |
gl

56

Defining Constructors

Vector.hpp
#include <vector>
class Vector {
public:
Vector() {
num_rows_ = 1;
storage_ = std::vector<double>(num_rows);
+
Vector(size_t M) {
num_rows_ = M;
storage_ = std::vector<double>(num_rows) ;
+
size_t num_rows() const { return num_rows; }
private:
size_t num_rows._;

! std: :vector<double> storage_;
s

=

University of Washington by Andrew Lumsdaine WASHINGTON %

puting Spring 2019 | R > UNIVERSITY of / 2

o

Initialization

 We have said that variables should always be initialized
 Different syntaxes

int a = 42;

int b = int(42); c(42)

int c(42);

y(27)
int d = { 42 };

std: :vector<double> x = std fvector<double>(27);

std: :vector<double> y(27);

AMATH 483/583 High-Performance Scientific Computing Spring 2019 ‘ e i UNIVERSITY o s B
. X . X for the UL ¥ Enesgy WASHINGTON
University of Washington by Andrew Lumsdaine

Defining Constructors

Vector.hpp
|

Initialization syntax

class Vector { |ntr0duce W|th .
public: / Construct data members
Vector(size_t M) : num_rows_(M), storage_(num_rows) {}

\} Omit default

size_t num_rows() const { return num_rows;
constructor

private: (why?)
size_t num_rows_;
std: :vector<double> storage_;

+;

#include <vector>

NORTHWEST INSTITUTE for ADVANCED COMPUTING
UNIVERSITY of

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : o & j R AT o
University of Washington by Andrew Lumsdaine e T

Accessors

#include <vector>
class Vector {

public:

}

private:
size_t

};

Return it by value
(copy)

double get(size_t i) {

return storage_[i];\\\\\\\\

std: :vector<double> storage_;

Look up the value
at location i

num_rows_,

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

Accessors

#include <vector>

class Vector {
public:
double get(size_t i) {
return storage_[i];

void set(size_t i, double wval) {

} ///’//,/’

lvalue vs rvalue

/

Pass by value

Assign the element

storage_[i] = val;

at locationto i to

} \

private:
size_t nu

Look up location i

value val

std: :vector<double> storuge—;

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

W

UNIVERSITY of)
WASHINGTON 1

Accessors

 Example — make a Vector of all ones

Vector x(10);

for (size_t i = 0; i < x.num_rows(); ++i) {
x.set(i, 1.0)

} T~

* Not a very natural syntax
« Asymmetric for get and set — mathematically we say x(i) regardless

Really want to say
x(i) = 1.0;

NORTHWEST INSTITUTE for ADVANCED COMPUTING \V’/ W
R -t o .

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY o

[f
62 e U1, Dopetrantof Evargy WASHINGTON

operator Functions A

« C++ has special function names for functions with operator syntax
« Suppose | want to be able to write an expression to add two vectors

Vector x(5), y(5), z(5); for (size_t i = 0; i < x.num_rows(); ++i) {

double tmp = x.get(i) + y.get(i);
zZ =X + ¥;
/ Iy

z.set (i, tmp);
This says to add
the vectors

Which would
you rather read?

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performan
University of Washington by Andrew Lumsdaine

o O / - L

ce Scientific Computing Spring 2019 : = \h"":é‘l/;[RNSg'[‘{(;jl—q / b
bt of Entagy 2

2

operator Functiqons

And returns

#include <vector>
class Vector
public:

private:

size_t

};

std: :vector<double> storage_;

a Vector

Vector add(const Vector& yj4———

Member

function add()

Takes another Vector
as an argument

num_rows_,

Member
function add()

Takes another Vector
as an argument

And returns
a Vector

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

ctor x(5),/y(5), z(5);

UNIVERSITY of
WASHINGTON

Before
And returns

#include <vector> a Vector Member
function add()

class Vector |

public: T
akes another Vector
Vector add(const Vector& yj4———
as an argument

private:
size_t num_rows_; Member Takes another Vector
, std: :vector<double> storage_; function add() as an argument

ctor x(5),/y(5), z(5);

And returns
a Vector

NORTHWEST INSTITUTE for ADVANCED COMPUTING
UNIVERSITY of

AMATH 483/583 High-Performance Scientific Computing Spring 2019 j ity Operated by T WASHINGTON
University of Washington by Andrew Lumsdaine e e e

After

And returns

#include <vector> a Vector Member function
~
operator+()
class Vector |
public: Takes another Vector

Vector operator+(const Vecteori—>-

as an argument
|

private:
size_t num_rows_; Member Takes another Vector
std: :vector<double> storage_,; operator+ as an argument

F;

ctor x(5),/y(5), z(5);

And returns
a Vector

\Z=

NORTHWEST INSTITUTE for ADVANCED COMPUTING
UNIVERSITY of

AMATH 483/583 High-Performance Scientific Computing Spring 2019 exlly Operated by T WASHINGTON
University of Washington by Andrew Lumsdaine / ot

Operator functions

And returns

#include <vector>
class Vector
public:

private:

size_t

};

Vector operator+(const Vecteori—>

std: :vectqgr<double> storage_;

a Vector

Member function
operator+()

Takes another Vector
as an argument

num_rows_;

Member
operator+

Takes another Vector
as an argument

Just a
function

And returns
a Vector

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

ctor x(5),/y(5), z(5);

UNIVERSITY of
WASHINGTON

operator Functions ,
There is a leap

« Time out! coming, and you
need to be here to

_~| make that leap

« Make sure you understand two things

« The way we defined the member function add()
— Like any member function

« All we did was change the name from “add” to “operator+”
« operator+ is just a member function

« Explain this to a classmate, a friend, yourself, someone on line to
make sure you understand this

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

W

UNIVERSITY o

f o)
WASHINGTON /)

68

operator Functions

« C++ has a special magic syntax with operator functions

#include <vector>

class Vector {
public:
Vector operator+(cons

(m

We’'ve defined the
member function
named operator+

We invoke a member
function like this

We can write it
like this!

private:
size_t num_rows_;
std: :vector<double> storage_;
};

Vector x(5), y(5)5 z(5);

Vector x(5), y(5), z(5);

Z

x.operator+(y) ;

NORTHWEST INSTITUTE for ADVANCED (

operator+()s

Still calls

IIIIIIIIIII f
WASHINGTON

ol

LEt
1
o

operator Functions
« C++ has a special magic syntax witb—anearatarfivantiong
#include <vector> One argument
assed in here
class Vector { / P And, the operator
public: we will look at
Vector operator+(const Vector& y); next is a little
private: We invoke a member more confusing
size_t num_rows_;
std: :vector<double> storage_; function like thIS, with /
¥ one argument
7 - Two operands)
Vector x(5), y(5)»; z(5); >ector X here ;
z = x.operator+(y); z =X *ty;
NORTHWEST INSTITUTE for ADVANCED COMPUTING

Before

#include <vector>

class Vector {
public:

Vector operator+(const Vector& y);

private:

size_t num_rows_;
std: :vector<double> storage_;

};

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

After

#include <vector>

class Vector {
public:

double operator() (size_t 1i);

private:

size_t num_rows_;
std: :vector<double> storage_;

};

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

operator Functions A

« The next operator isn’t a binary operator betweeWcts

class Vector { The first pareps are part

public: of the function name iisa function
double operator() (size_t i); parameter

private: \\\\\\.1Tﬂsnuﬂnberfuncﬂon Invoke the
size t is called “operator()” member function
std: :vector<double> storage_; operator() with

¥ Invoke the member function argument 3

operator() with argument 3

Vector x(5);
double foo = X.opeféggr()(B);
A4

NORTHWEST INSTITUTE for ADVANCED COMPUTING

73 AMATH 483/583 High-Performance Scientific Computing Spring 2019 : : j WASHINGTO{V ?;
University of Washington by Andrew Lumsdaine e '1’

Vector x(5); \
double foo = x(3);

What Should operator() return?

class Vector {

Returns a value

public:

private:
size_t

};

double operator() (size_t 1i);

num_rows_;

std: :vector<double> storage_;

Return by value is like
pass by value —it’s a
temporary copy

So we can do this

\

Vector X(S){////

double foo = x(3);

But we want
to do both!

But not this

NORTHWEST INSTITUTE fo.

rvalue

Vector A (5);
x(3) = 0.0;

rvalue A

e Scientific Computing Spring 2019 e NIVERSITY o f
University of Washington by Andrew Lumsdaine e S,

WASHINGTON

[
e
1
24

Before

class Vector {
public:
double operator() (size_t i);

private:
size_t num_rows_;

std: :vector<double> storage_;

+;

NORTHWEST INSTITUTE for ADVANCED COMPUTING

UNIVERSITY of
WASHINGTON

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Crnengy

After

class Vector {
public:
double& operator() (size_t i);

private:
size_t num_rows_;

std: :vector<double> storage_;

+;

NORTHWEST INSTITUTE for ADVANCED COMPUTING

UNIVERSITY of
WASHINGTON

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Crnengy

What Should operator() return?

Return a reference to
internal member data

class Vector
public:
double& operator() (size_t 1i);

private: member data is not to
size_t num_rows_.— something temporary

So a reference to

std: :vector<double> storage_;

¥ When we create

(“instantiate”) an object,
Vector x(5); — | its member data live as
long as the object does

NORTHWEST INSTITUTE for ADVANCED COMPUTING

University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019 ? g & . UNIVERSITY of

WASHINGTON

What Should operator() return?

Return a reference to

public: internal member data Vector x(5):

class Vector

double& operator() (size_t 1i);
double foo = x(3);

private: x(2) = 0.0;
size_t num_rows_;
std: :vector<double> storage_;
) Can assign to internal Can read from internal
data through the data through the
Vector x(5); reference reference

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 ‘ g V:'J:é\glkrjg';S{q :T;
University of Washington by Andrew Lumsdaine ot &

Interface and Implementation
Vector.hpp

#include <vector>

class Vector {
public:
double& operator() (size_t 1i);

private:
size_t num_rows_;

std: :vector<double> storage_;

+;

#include '"Vector.hpp"

return storage_[il];
NORTHWEST INSTITUTE for ADVANCED }

79 A

Vector.cpp

double& Vector: :operator() (size_t i) {

UNIVERSITY of

WASHINGTON

Interface and Implementation

Vector.hpp

#include <vector>

class Vector {
public:
double& operator() (size_t i) {
return storage_[i];

+
private:
size_t num_rows_;
std: :vector<double> storage_;
Iy

NORTHWEST INSTITUTE for ADVANCED COMPUTING
UNIVERSITY of

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : ooty f ‘ I
University of Washington by Andrew Lumsdaine e e e

All Together

Vector.hpp

#include <vector>

class Vector {
public:
Vector(size_t M) : num_rows_(M), storage_(num_rows_) {}

double& operator() (size_t i) { return storage_[i]; }

size_t num_rows() const { return num_rows_; }
private:

size_t num_rows_;

std: :vector<double> storage_;

};

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : [UNIVERSITY of
. . . . e A Energy WASHINGTON
University of Washington by Andrew Lumsdaine

Reprise operator+()

#include <vector>

class Vector {
public:
Vector operator+(const Vector& y);

private:
size_t num_rows_;
std: :vector<double> storage_;

};

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : . o j UNIVERSITY of
. . . . for the US. Depuartment of Energy WASHINGTON
University of Washington by Andrew Lumsdaine

- C.4: Make a function a member only if it needs
+
Reprlse operator () direct access to the representation of a class

£

#include <vector>

Does this need to

class Vector { be a member?
public:
Vector operator+(const Yector& y) {
Data for z Vector z(num_rows_);
for (size_t i = 0; i < num_rows_; ++i) {

z.storage_[i] = sﬁerage_[i] + y.stor%ge[i];

}
}
Data for “x” Data fory
private:
size_t num_rows_;

std: :vector<double> storage_;

};

NORTHWEST INSTITUTE for ADVANCED COMPUTING

W

UNIVERSITY of)
Energy WASHINGTON 1

o

AMATH 483/583 High-Performance Scientific Computing Spring 2019

83 University of Washington by Andrew Lumsdaine

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

All Together

#include <wvector>

Vector.hpp

class Vector {
public:
Vector(size_t M) : num_rows_(M), storage_(num_rows_) {}

double& operator()(size_t i) { return storage_[il; 7

size_t num_rows() const { return num_rows_; }

Can access via
operator()

Don’t need access
to internals

2

private:
size_t num_rows_;
std: :vector<double> storage_;
F;

Return a Vector

Take args by

const reference
NORTHWEST INSTITUTE for AD

#include "Vector.hpp"

84

NG CUTNTPUTNTY SPTng 20U TY

University of Washington by Andrew Lumsdaine

Amath583.cpp

__Vector operatory(const Vectef& x, const Vector& y) {

All Together

Vector.hpp

#include <wvector>
class Vector {
public:
Vector(size_t M) : num_rows_(M), storage_(num_rows_) {}
double& operator()(size_t i) { return storage_[il; } Amath583 hpp
* B
size_t num_rows() const { return num_rows_; } #include "Vector.hpp "
private:
size_t num_rows_; Vector operator+(const Vector& x, const Vector& y);
std: :vector<double> storage_;
}; |
’ |
#include "Vector.hpp" A h583
#include "amathb83.hpp" mat -CPPp

Vector operator+(const Vector& x, const Vector& y) {
Vector z(x.num_rows());
for (size_t i = 0; i < z.num_rows(); ++i) {
z(i) = x(1) + y(i);

NORTHWEST INSTITUTE for ADVAN }

85

TS Ol e o Oy Aaew cansaante

All Together

Vector.hpp

#include <wvector>
class Vector {
public:
Vector(size_t M) : num_rows_(M), storage_(num_rows_) {}
double& operator()(size_t i) { return storage_[il; } Amath583 hpp
* B
size_t num_rows() const { return num_rows_; } #include "Vector.hpp "
private:
size_t num_rows_; Vector operator+(const Vector& x, const Vector& y);
std: :vector<double> storage_;
}; |
’ |
#include "Vector.hpp" A h583
#include "amathb83.hpp" mat -CPPp

Vector operator+(const Vector& x, const Vector& y) {
Vector z(x.num_rows());
for (size_t i = 0; i < z.num_rows(); ++i) {
z(i) = x(1) + y(i);

NORTHWEST INSTITUTE for ADVAN }

86

TS Ol e o Oy Aaew cansaante

Not quite finished

#include "Vector.hpp"
int main() {

Vector x(100), y(100), z(100), w(100);

% Cc++ constness.cpp
constness.cpp:20:12: error: no matching function for call to object of type 'const Vector'

z(1) = x(1) + y(i);
A

z =3 +7Y;

return O;

} constness.cpp:7:11: note: candidate function not viable: 'this' argument has type
'const Vector', but method is not marked const
double& operator()(size_t i) { return storage_[i]; }
A
constness.cpp:20:19: error: no matching function for call to object of type 'const Vector'

z(1) = x(1) + y(i);
A

constness.cpp:7:11: note: candidate function not viable: 'this' argument has type
'const Vector', but method is not marked const
double& operator()(size_t i) { return storage_[i]; }
| A
2 errors generated.

NORTHWEST INSTITUTE for ADVANCED COMPUTING 1 *x¢¢’// 1‘,\7F
Pacific Northwest /

AMATH 483/583 High-Performance Scientific Computing Spring 2019

/ NATIONAL LABORATORY
University of Washington by Andrew Lumsdaine

UNIVERSITY of

87 WASHINGTON /

/

Constness

#include <wvector>

class Vector {
public:
Vector(size_t M)

size_t num_rows() const {

private:
size_t n

std: :vector<double> orage_;

};

: num_rows_(M), storage_(num_rows_) {}
double& operator()(size_t i) { return storage_[il; 7

eturn num_rows_; }

Vector.hpp

x and y are defined
to be const

#in

Amath583.hpp |

Vector operatorj\const Vector& x, const Vector& y);

| 1

“this” is not const

NORTHWEST INSTITUTE for ADVAN

88

#include
#include

"Vector.hpp"
"amathb583. hpp"

Vector operator+(const Vector& x, const Vector& y) {

Vector z(x.num_rows());
for (size_t i =
z(i) = x(1) + y(1);
+
+

0; 1 < z.num_rows(); ++i) {

]

Amath583.cpp

Overloading

void foo(size_t i) {

}

std::cout << "foo(size_t i)" << std =endl-

+
/ Takes a double
void foo(double {

std::cout << "foo(double d)" << std::endl;

// Takes a size_t

int main() {

size_t a = 0;
double b 0.0;

foo(a);
foo(b);

return O;
}

89

% ./a.out
foo(size_t 1)
foo(double d)

W

UNIVERSITY of)
WASHINGTON 1

Overloading

/ Returns void
void foo(size_t i) {

std::cout << "void foo(size_t i)" << std::endl:

+

/ Returns size_t
size_t foo(size_t_j -

std::cout << "size_t foo(size_t 1)" << stuoTTEIUOT; |

+
% |c++ overload.cpp

overload.cpp:7:8: error: functions that differ only in their return type cannot be overloaded
size_t foo(size_t i) {

~rsrmminans A

overload.cpp:3:6: note: previous definition is here
void foo(size_t 1) {
size_t a = 0; ~~~~ A

size_t b = 0; I

foo(a); / Have to pick the
double c = foo(a);

function then call it

int main() {

return O;

i / UNIVERSITY of
90 i / s nengy WASHINGTON

No overloading on return values

¥

int main() {

size_t foo(size_t i) {

]

std::cout << "size_t foo(size_t i)" << std:: What happens to the

return i;

return value is not the
concern of the function

size_t a

lgnore return value

foo(a);

size_t b = foo(a=

Assign to size t

double ¢ = foo(a);

return O : \

Assign to double

91

University of Washington by Andrew Lumsdaine

W

UNIVERSITY of)
WASHINGTON 1

Constness

double parens(double& x, size_t i) {

X is a ref

std::cout << "called non const parens" << std::endl;

double y = x;
// .. some things
return y;

}

c++ const3.cpp
const3.cpp:27:14: error: no matching function for call to 'parens'

const3.cpp:13:8: note: candidate function not viable: 1st argument ('const double') would lose const
qualifier
double parens(double& x, size_t i) {

int main() {

double x = 5.0;
double y

const double z =
double w

double a
double b

const double c =

return O;

parens(5.0);
parens(x + y);

parens(x) ;

A
|
1 I

const3.cpp:29:14: error: no matching function for call to 'parens'

const3.cpp:13:8: note: candidate function not viable: expects an l-value for 1st argument
double parens(double& x, size_t i) {

50;——————”—|IVOLURGY

parens(z);

const3.cpp:32:20: error: no matching function for call to 'parens'

s~

const3.cpp:13:8: note: candidate function not viable: expects an 1-value for 1lst argument

double parens(double& x, size_t i) {
A

parens(x +.y + z + 5.0); |

92

Not okay = | AT

Pacific Northwest
NATIONA ABORATORY

ic Computing Spring 2019 | st
J!n by Andrew Lumsdaine / f Energy

UNIVERSITY of
WASHINGTON

Constness

double parens(const double& x, si

/ X is a const ref
T i) {

std::cout << "called const parens" << std::endl;

double y = x;
// .. some things
return y,;

./a.out
called const parens

int main() {

called const parens

called const parens
called const parens

called const parens

double x = 5.0; / Okay
double y = parens(x);

const double z = 5.0;/ Okay
double w = parens(z); ;
double a = parens(5.0); Okay
double b = parens(x + y);

const double ¢ = parens(x + y + z + 5.0);

return O;

okay

W

93

ic Computing Spring 2019

UNIVERSITY of)
N WASHINGTON
be Andrew Lumsdaine %

Constness/ xisaconstref| __—] xisaref

double parens(const double& x, size_t i) { double parens(double& x, size_t i) {
std::cout << "called const parens" << std::endl; std::cout << "called non const parens" << std::endl;
double y = x; double y = x;
// .. some things // .. some things
return y; return y;

} }

int main() A
double x = 50; / X IS |Va|ue ./a.out
double y = parens(xJ; ' called non const parens
const double z = 52.;)/ z marked const called const parens
double w = parens(ZJ; , called const parens
double a = parens (5.0 5.0is an called const parens
double b = parens(x + y); rvalue called const parens
const double c¢ = parens(x + z + 5.0);

‘ X return 0; X +yis an rvalue
2 beAndrew Lumsdaine &%\l’;{k’:g{a& / :1

Why not always pass const reference?

double parens(const double& x, size_t i) {
std:" t << "called const parens" << std::endl;
double y =
// .. some things
return Xx; Return dOUble

}

. . Cc++ const4.cpp

int main() { const4.cpp:23:17: error: expression is not assignable
double y = 0.5; parens(x, 27) = p;
double p = 3.14; A

const4.cpp:26:17: error: expression is not assignable

double x = 5.0; parens(z 27) = D;
parens(x, 27) = p; ’ A
const double z = 5.0; const4.cp§:g8:%3: err?r: expression 1s not assignable
parens(z, 27) = parens(5.0,) ; P
parens(5.0, 27) = p const4.cpp:29:21: error: expression 1s not assignable
parens(x + y, 27) = parens(x +y, 27) = N
return O; - W

’ . R TR | wees [

Before

double y = x;

return Xx;

// .. some things

double parens(const double& x, size_t i) {
std::cout << '"called const parens" << std::endl;

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

After

double& parens(const double& x, size_t i) {

std::cout << '"called const parens" << std::endl;

double y = x;

// .. some things

return Xx;

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

Why not always pass const reference?

double& parens(const doubte&—=x;"SIZE_T 1) 1 BUt X IS const
std::cout << ed const parens" << std::endl:
double y = x;
// .. some things Return ref to double
return Xx; T
b ’
Can’t return const
1
int main() { c++ const5.cpp
double y = 0.5; const5.cpp:9:10: error: binding value of type 'const double' to reference to type 'double' drops
doubl B 3'14. "const' qualifier
oubie p = 2. 1% return x;
A
double x = 5.0;

parens(x, 27) = p;

const double z = 5.0;
parens(z, 27) = p;

parens(5.0, 27) = p;
parens(x + y, 27)

b

return 0; ~ W
J Pacif,c Northvggstw / /.

98

bity of Washington by Andrew Lumsdaine REESEENGION

igh-Performance Scientific Computing Spring 2019 u" : UNIVERSITY of / =

Before

double y = x;

return Xx;

// .. some things

double& parens(const double& x, size_t i) {
std::cout << '"called const parens" << std::endl;

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

After

const double& parens(const double& x, size_t i) {

std::cout << '"called const parens" << std::endl;

double y = x;

// .. some things

return Xx;

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

Why not always pass const reference?

const double& parens(const double& x, size_t i) {
std::cout << "called const parens'" << std::endl;

double y = x;
// .. some things
return x;

int main() {

double y = 0.5;
double p = 3.14;
double x = 5.0;

parens(x, 27) = p;

const double z = 5.0;
parens(z, 27) = p;

parens(5.0, 27) = p;
parens(x + y, 27)

b

return O;

101

Cc++ const5.cpp
const5.cpp:26:17: error: cannot assign to return value because function 'parens' returns
parens(x, 27) = p;

NNNNNNNNNNNNN A

const5.cpp:5:7: note: function 'parens' which returns const-qualified type 'const double
here

const double& parens(const double& x, size_t i) {
Ansrsmirirmins

const5.cpp:29:17: error: cannot assign to return value because function 'parens' returns
parens(z, 27) = p;

~~~~~~~~~~~~~ A
const5.cpp:5:7: note: function 'parens' which returns const-qualified type 'const double
here
const double& parens(const double& x, size_t i) {
Anmsrsmirins

const5.cpp:31:19: error: cannot assign to return value because function 'parens' returns
parens(5.0, 27) = p;

const5.cpp:5:7: note: function 'parens' which returns const-qualified type 'const double
here

const double& parens(const double& x, size_t i) {
Anmrimirins

const5.cpp:32:21: error: cannot assign to return value because function 'parens' returns
parens(x + vy, 27) = p;
A
const5.cpp:5:7: note: function 'parens' which returns const-qualified type 'const double
here
const double& parens(const double& x, size_t i) {
Ao

NATIONAL LABORATORY

High-Performance Scientific Computing Spring 2019
bity of Washington by Andrew Lumsdaine

a const value

&' declared

a const value

&' declared

a const value

&' declared

a const value

&' declared

UNIVERSITY of
WASHINGTON




Before

double y = x;

return Xx;

// .. some things

double& parens(const double& x, size_t i) {
std::cout << '"called const parens" << std::endl;

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON




After

double& parens(double& x, size_t i) {
std::cout << '"called const parens" << std::endl;
double y = x;
// .. some things
return Xx;

NORTHWEST INSTITUTE for ADVANCED COMPUTING
UNIVERSITY of

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : ; j R AT o
University of Washington by Andrew Lumsdaine . _—




How about no const at all?

double& parens(double& x, size_t i) {
std::cout << "called const parens" << std::endl;
double y = x;
// .. some things

return x; c++ const5.cpp ‘ -
const5.cpp:30:3: error: no matching function for call to 'parens'
+ parens(z, 27) = p;
Anmminin
const5.cpp:14:9: note: candidate function not viable: 1st argument ('const double') would lose const
int main() { qualifier
double y = 0.5; double& /p\ar'ens(double& x, size_t i) {
double p = 3.14; const5.cpp:32:3: error: no matching function for call to 'parens'

double x 5.0, e ) ) )
|const5.cpp:14:9: note: candidate function not viable: expects an l-value for 1lst argument
parens(x, 27) = p;

double& parens(double& x, size_t i) {
A

const double z = 5.0; const5.cpp:33:3: error: no matching function for call to 'parens'

parens(z, 27) = p;

~r~ A~~~

const5.cpp:14:9: note: candidate function not viable: expects an l-value for 1lst argument
parens(S,O, 27) = p; double& parens(double& x, size_t i) {

A
p;

parens(x + y, 27)

return O;

104 igh-Performance Scientific Computing Spring 2019 / - v»'rﬁ'é}'ﬁ"rfgr%&
bity of Washington by Andrew Lumsdaine f . i




How about no const at all?

This makes sense

int main() {

double y =
double p =

This should be an error

double x = 7.
parens(x, 27)

=p,

This should be an error

const doubl
parens(z,

This should be an error

parens (5.
parens(x +

return O;

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

[

b1
1
2



More sensible
This makes sense

This makes sense
|

double x This makes sense
parens(x, 27) ; |

int main()
double y
double p

comst Aeilsle 0- This makes sense
double q

double r
double s = par€ns(x + y, 27);

return O;

NORTHWEST INSTITUTE for ADVANCED COMPUTING

W

UNIVERSITY of )
WASHINGTON 1
o4

AMATH 483/583 High-Performance Scientific Computing Spring 2019

106 University of Washington by Andrew Lumsdaine




More sensible

double y = x;
// .. some things
return x;

}

double& parens(double& x, size_t i) {
std::cout << "called non const parens" << std::endl;

Cc++ const6.cpp
const6.cpp:30:14: error: no matching function for call to 'parens'

I~~~

const6.cpp:14:9: note: candidate function not viable: 1st argument ('const double') would lose const

int main() {
double y = 0.5;
double p = 3.14;

double x = 5.0;
parens(x, 27) = p;

const double z = 5.0;
double q = parens(z,

double s = parens(x +

return O;

7) ; double& parens(double& x, size_t i) {

double r = parens(5.0, 27);

107

qualifier
double& parens(double& x, size_t i) {
A

const6.cpp:32:14: error: no matching function for call to 'parens'

I~~~

const6.cpp:14:9: note: candidate function not viable: expects an l-value for 1st argument
double& parens(double& x, size_t i) {
A

const6.cpp:33:14: error: no matching function for call to 'parens'

I~~~ A~~~

const6.cpp:14:9: note: candidate function not viable: expects an l-value for 1st argument

A
]

Oops, need to be const
|

Going in circles?

“FW Lumsdaine

27) ;

W

UNIVERSITY of
o of Energy WASHINGTON




More sensible

const double& parens(const double& x, size_t i) {
std::cout << "called non const parens" << std::endl;
double y = x;
// .. some things

Cc++ const6.cpp

EEEI 5 constb.cpp:27:17: error: cannot assign to return value because function 'parens' returns a const value
} parens(x, 27) = p;
~~~~~~~~~~~~~ A
————mee=rc>—— . . L.
const6.cpp:6:7: note: function 'parens' which returns const-qualified type 'const double &' declared
double y = 0.5; here
double p = 3.14: const double& parens(const double& x, size_t i) {
°)
Arsrirmsrismirs
double x = 5.0;

parens(x,_27) = p;

const double z = 5.0;

double q = parens(z, 27); Oops, need to be non const

\ I
double r = parens(5.0, 27); i\"‘---,-~ .) .
Going in circles?

double s = parens(x + y, 27);

return 0; o ’ -w-

J Pacific Northwest -
} . . " NATIONAL LABORATORY
Computing Spring 2019 | UNIVERSITY of

108 - WASHINGTON
ew Lumsdaine

Overloading to the rescue

const double& parens(const double& x, siz
oQut << "called noX const parens"
double y =

double& parens(double& x, size_t i) {

by

std™
double y

// .. some th

return Xx;

out << "called

Not const
——

n const parens" << std::endl;

// .. some th?
return x; const
}
—- e
double y = 0.5; const

double p = 3.14;

double x 5.0;
parens(x, 27) = p;

const double z = 5.0;
double q = parens(z, 27);

double r = parens(5.0, 27);
double s = parens(x + y, 27);

return O;
}
109

Not const

./a.out

called non const parens
called const parens
called const parens
called const parens

Pacific Northwest / W_
NAT T

ORY

Computing Spring 2019 /" i : UNIVERSITY of
ew Lumsdaine Frie s ——

WASHINGTON

[
e
1
24

What does this have to do with operator()

const double& parens(const double& x, siz{ double& parens(double& x, size_t i) {
std: vQut << "called noX const parens" std™>Qout << "called™sQn const parens" << std::endl;
double y = double y
// .. some th? /) ..
return X; const return x; Not const
} } -
const Not const

class Vector {
public:
Vector(size_t M) : num_rows_(M), storage_(num_rows_) {}

double& operator() (size_t i) { return storage_[i]; }

private: Where is the const or non-

size_t num_rows_; hi | d 5
std: :vector<double> storage_; const thing to overload on:

} o
, W
UNIVERSITY of)
LAY / for the ULS. Deprartmant of Enengy WASHINGTON 1
/ b1\

University of Washington by Andrew Lumsdaine

What does this have to do with operator()

const double& parens(const double& x, siz{ double& parens(double& x, size_t i) {
std: vQut << "called noX const parens" std™>Qout << "called™sQn const parens" << std::endl;
double y = double y
// .. some th? /) ..
return X; const return x; Not const
} } S
const Not const
class Vecton—

public:
Vector(size_t M) : num_rows_(M), storage_(num_rows_) {}

double& operator() (size_t i) { return storage_[il; }
const double& operatQr() (size_t i) { return storage_[il; }

privat& Where is the const or non-
S . . Im_TrowsS_; . 3
-{ Only differing by [= 2™ const thing to overload on:

W

UNIVERSITY of)
WASHINGTON 1

}; return type

There is a secret argument

std::

const double& parens(const double& x, siz
const parens" std™

ut << "called no

double& parens(double& x,

out << "called

size_ t i) {
n const parens" << std::endl;

public:

Vector(size t M)

double& operator

const double&

Called “this”

ator () (gize_

num_rows_;

sta. . vecctor~double> storage_;

};

112

double y = double y
// .. some th? /) ..
return x; const return x; Not const
} } S
const Not const
class Vectori—

: num_rows_(M), storage_(num_rows_) {}

ize_t 1) { return storage_[i]; }
return storage_[i]; }

There is a secret
argument

There is a secret
argument

WASHINGTON / |

There is a secret argument

const double& parens(const double& x, siz{ double& parens(double& x, size_t i) {
std: vQut << "called noX const parens" std™>Qout << "called™sQn const parens" << std::endl;

double y = double y
// .. some th? // .. some th
return x; const return Xx; Not const
} } S
const Not const

class Vector {
public:
Vector(size_t M) : num_rows_(M), storage_(num_rows_) {}

double& operator () (Vector~skthis, size_t i) { return storage_[il; [}
const double& operator() (Vector *thIsy size_t i) { return storage_[i]; |}

private:
SHAS num_rows._; How would we fix our

std: :vector<double> storage_;
m . const problem?
— TSy O oD e oo

Before

class Vector {
public:
Vector(size_t M) : num_rows_(M), storage_(num_rows_) {}

double& operator() (Vector *this, size_t i) { return storage_[il; |
const double& operator() (Vector *this, size_t i) { return storage_[i]; [}

private:
size_t num_rows_;
std: :vector<double> storage_;
s

NORTHWEST INSTITUTE for ADVANCED COMPUTING = W
Pacific Northwest £
AMATH 483/583 High-Performance Scientific Computing Spring 2019 / . - UNIVERSITY of

14 University of Washington by Andrew Lumsdaine _— WASHINGTON

After

class Vector {
public:
Vector(size_t M) : num_rows_(M), storage_(num_rows_) {}

double& operator() (Vector *this, size_t i) { return storage_[il; [}
const double& operator() (const Vector *this, size_t i) { return storagqd [il; }

private:
size_t num_rows_;
std: :vector<double> storage_;
)

NORTHWEST INSTITUTE for ADVANCED COMPUTING \V’/ W
Pacific Northwest £

0 NATIONAL LABORATORY
UNIVERSITY of

AMATH 483/583 High-Performance Scientific Computing Spring 2019

University of Washington by Andrew Lumsdaine e WASHINGTON

115

After After

class Vector {
public:

private:
size_t num_rows_;
std: :vector<double> storage_;
I s

Vector(size_t M) : num_rows_(M), storage_(num_rows_) {}

double& operator() (size_t i) { return storage_[i]; }
const double& operator() (size_t i) const { return storage_[i]; }

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

const “this”

UNIVERSITY of
WASHINGTON

Finally

#include <vector>

class Vector {
public:
Vector(size_t M) : num_rows_(M), storage_(num_rows_) {}

double& operator() (size_t i) { return storage_[il; }
const double& operator() (size_t i) const { return storage_[i]; }

size_t num_rows() { return num_rows_; }

private:
size_t num_rows_;
std: :vector<double> storage_;

};

NORTHWEST INSTITUTE for ADVANCED COMPUTING \V’/ W
Pacific Northwest

/ NATIONAL LABORATORY

AMATH 483/583 High-Performance Scientific Computing Spring 2019 e UNIVERSITY of
nent of Enengy WASHINGTON

" University of Washington by Andrew Lumsdaine

C++ Core Guidelines related to classes

« C.1: Organize related data into structures (structs or classes)

« C.3: Represent the distinction between an interface and an
implementation using a class

« C.4: Make a function a member only if it needs direct access to the
representation of a class

« C.10: Prefer concrete types over class hierarchies
 C.11: Make concrete types reqular

NORTHWEST INSTITUTE for ADVANCED COMPUTING
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelings o oo ’ st WASHINGTON

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

Thank you!

NORTHWEST INSTITUTE for ADVANCED COMPUTING \gy’/ W
y Pacific Northwest /

NATIONAL LABORATORY

AMATH 483/583 High-Performance Scientific Computing Spring 2019 j UNIVERSITY of /
¥ Enecgy WASHINGTON

119 University of Washington by Andrew Lumsdaine

D0 e,

Except where otherwise noted, this work is licensed under

https://creativecommons.org/licenses/by-nc-sa/4.0/

W

NORTHWEST INSTITUTE for ADVANCED COMPUTING
UNIVERSITY of

AMATH 483/583 High-Performance Scientific Computing Spring 2019 2
120 ; .) ; for witof Hapegy WASHINGTON 5
University of Washington by Andrew Lumsdaine | B

