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Overview

Recap of Lecture 2

— Types and variables
— Namespaces

* Functions and procedural abstraction

« Parameter passing

* Program / file organization
 Make and Makefile

« Back Propagation

* Vector and Matrix
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SC’19 Student Cluster Competition Call-Out!

« Teams work with advisor and vendor to design and build a cutting-edge,
commercially available cluster constrained by the 3000-watt power limit

 Cluster run a variety of HPC workflows, ranging from being limited by CPU
performance to being memory bandwidth limited to I/O intensive

Teams are comprised of six undergrad or high-school students plus advisor
fhttps://sc19.supercomputing.or{?
/program/studentssc/student-
_cluster-competition/ )

(- )

Informational meeting:
Tu 5PM-6PM Allen 203
L Th 5PM-6PM Allen 203 )
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One Quick Definition

- FLOP
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Interpreted language (Python)

Another
program
lmport math Interpreter
(A program that runs your
a = 3.14 program)
b = math.sqrt(a)
print (b)
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Compiled language

Your
program

int main () {
int a = 1; Your program running
double x = 0.3; (Under control of the OS)
foo(x,a);

}

\/

Assembly Code _ Object Code
(Another language) (Another language — binary)
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Interpreted vs compiled

Use functions
from iostream

library <cmath>

Use math Call function from
library math library
1 7
\ Curly braces

#include <itostream>

import math for code
blocks

a=3.14 |

b = math.sqrt(a)| Code must

;f:int (b) be in a

/ \\ function

Declare
variables
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int main() {

double a = 3.14;

double b =

Use math
library

Call
function

std: :sqrt(a);

std: :cout << b\<< std::endl;

retyrn O;

Variables
are typed

Print
result
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Compilation

You can’t run
this code

#include <cmath>
#include <iostream>

int main() {

double a = 3.14;

return 0;

double b = std::sqrt(a);
std::cout << b << std::endl;

An
“executable”

It needs to be
__—| turned into code
that can run

] Multi-step

N\

process

Compile to
object file

Then link in

/
Bits just for
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Declaring and Initializing Variables

* In the old days variables were « Now they can be defined

declared at the beginning of a anywhere in the block
block . .
int main () {

int main () { /).
double x, y; —| Declaration double x = 3.14159;
22mee double v = x x 2.0;
x = 3.14159; /) .. ; .
y = X * 2.0;\\\ return O;\\\\\ Dgckﬁayon}NWh
VYA Use \ initialization
return O; : _

} « Best practice: Don’t declare variables before

they are needed and always initialize if possible
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Namespace Recommendation for AMATH 483/583

P.3: Express intent

= "Hello World";
<< std::endl;

Too much typing?
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https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md

Organizing your programs

Abstraction

« Software development is difficult
 How do humans attack complex 7

problems?
* Apply the same principles to software
AN
* Modular / reusable Procedural

 Well defined interfaces and
functionality

 Understandable

Data type

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 e AORY | UNIVERSITY o
University of Washington by Andrew Lumsdaine / e =




NORTHWEST INSTITUTE for ADVANCED COMPUTING iz
J  Pecinc pormwest

| of
o e U1, oapevtrant of Evrgy [ WASHINGTON

ement of Eneng

Procedural Abstraction

Separate functionality into well-defined, reusable, pieces of parameterized code

(aka “functions”)



Newton’s Method for Square Root

To solve f(x) =0 for @

Linearize (approximate the nonlinear problem with a linear one) and
solve the linear problem

lterate
Taylor: flx + Az

2
P
&

Az f'(z) = Azf'(z)

_ _ f(=)
AT = =)
fx)=a2*—y=0—y=+z fl(zr)=2x Aa::—wz;y
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Compute square root of 2

#include <iostream>
#include <cmath>

int main () {
double x = 1.0;

for (size_t i = 0; i < 32; ++i) {
double dx = - (x*x-2.0) / (2.0%x) ;
x += dx;
if (std::abs(dx) < 1.e-9) break;

+

std::cout << x << std::endl;

return O;
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Compute square root of 3

#include <iostream>
#include <cmath>

int main () {
double x = 1.0;

for (size_t i = 0; i < 32; ++i) {
double dx = - (x*x-3.0) / (2.0%x) ;
x += dx;
if (std::abs(dx) < 1.e-9) break;

+

std::cout << x << std::endl;

return O;
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Compute square root ofg ar{rd 3

#include <iostream> wnclude <iostream> ’
#include <cmath> Don’t do the same thing |inciuge <cratn> But they’re not
St mesm ) 4 twice in different places | main 0 ¢ exactly the same
double x = 1.0; double x = 1.0; /////
for (size_t i = 0; 1 < 32{/::;) { for (size_t i = 0; i <732; ++i) {
double dx = - (x*x-2.0) / (2.0%x) ; double dx = - (x*x-3.0) / (2.0%x) ;
x += dx; x += dx;
if (std::abs(dx) < 1\e-9) break; if (std::abs(dx) < 1\ e-9) break;
+ }

std::cout << x << std::endl; std::cout << x << std::e
return O; return O;
+ }
This is the only difference This is the only difference
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Procedural Abstraction

Define function named

#include <cmath>

| double sqrt583(double y/ parameterized by y

pd double x = 1.0;
It returns
3 dOUble for (size t i =
double dx = -
X += dx;
if (abs(dx) <
It returns +
a double |\
return X;
+

sqrt583

The function is

\ |

0: i < 32; ++i) { Which is a double

(x*xx-y)/ (2.0%x) ;

1.e-9) break;

Same code Except for
as before parameterization

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 / el = (L ‘RY '''''''''''
University of Washington by Andrew Lumsdaine / s 22




Procedural Abstraction

Redundant?

////

#include <cmath>

double sqrt583(double y) {

It returns
a double

It returns
a double

N\

double x

= 1.0;

for (size_t i = 0; i < 32; ++i) {

double

dx = - (x*x-y) / (2.0%x) ;

x += dx;
if (abs(dx) < 1.e-9) break;

+

return X;
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Compiler can deduce return t

Note auto is a

////

#include <cmath>

C++14 feature!

auto sqrt583(double y) {

It returns
a double

It returns
a double

N\

double x

= 1.0;

for (size_t i = 0; i < 32; ++i) {

double

dx = - (x*x-y) / (2.0%x) ;

x += dx;
if (abs(dx) < 1.e-9) break;

+

return X;
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Square root of 2 and 3

Note initialization
and declaration of i

#include <iostream>
5 ude <cmath>

double sqrt583(double
double x = 1.0;

What is a size _t?

M) {
|| ouble dx = - (x*x-y) / (2.0%x) ;

x += dx;
if (abs(dx) < 1.e-9) break;

Pass

parameter 2

int _main () {

sqrt583(2.0) << std::emdl;
PaSS sqrt583(3.0) << std::endl;

parameter 3
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Thought experiment

Change value of y

Printy

N\

What will print?
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#include <rostream>
#include <cmath>

double sqrt583(double y) {
double x 1.0;

for (size_t i = 0; i < 32; ++i) {

double dx = - (x*x-y) / (2.0%x) ;
x += dx;
if (abs(dx) < 1.e-9) break;
\}
y =% $ ./a.out
1.41421
2

int maim\ () {
double = 2.0;
std: :cout %< sqrtb83(y) << std::endl;

std::cout <<y << std::endl;

return O;

3
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#include <cmath>

Parameter Passing in C++ #include <iostrean>

double sqrt583(double y) {
double x = _1=

¢]

y is passed by value (copied), so only
the copy is changed, not the original

| if/ (abs(dx) < 1.e-9) break;

i = 0; i < 32; ++i) {
- (xxx-y) / (2.0%x) ;

C++ has “pass by value” semantics

int main () {
double y = 2.0;

std: :cout << sqrtb83(y) << std::endl;
std::cout << y << std::endl;

NORTHWEST INSTITUTE for ADVANCED COMPUTING return O;
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#include <rostream>

Parameter Passing in C++ | .ciuie <cnatn

double sqrt583(double z) {
double x =4.0;

y is passed by value (copied), so only
the copy is changed, not the original

| i ) < 1.e-9) break;

i =/0; 1 < 32; ++i) {
(xxx-z) / (2.0%x) ;

C++ has “pass by value” semantics

I
Just to be clear, the parameter can
have any name (don’t confuse with y
declared in main)

int main () {

double y = 2.0;

std: :cout << sqrtb83(y) << std::endl;
std::cout << y << std::endl;

NORTHWEST INSTITUTE for ADVANCED COMPUTING return O;
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#include <rostream>

Before #include <cmath>

double sqrt583(double z) {
f 4iZéiut double x = 1.0;
Z for (size_t i = 0; i < 32; ++i) {
double dx = - (x*x-z) / (2.0%*x) ;
x += dx;
if (abs(dx) < 1.e-9) break;
+
Z = X;
return x;

int main () {
double y = 2.0;
std: :cout << sqrtb83(y) << std::endl;
std::cout << y << std::endl;
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#include <iostream>
After #include <cmath>

double sqrt583(double& z) {
f 4{Zéiut double x = 1.0;
1.41421 for (size_t i = 0; i < 32; ++i) {
double dx = - (x*x-z) / (2.0%x) ;
x += dx;
if (abs(dx) < 1.e-9) break;
}
zZ = X;
return x;

int main () {
double y = 2.0;
std: :cout << sqrtb83(y) << std::endl;
std::cout << y << std::endl;

NORTHWEST INSTITUTE for ADVANCED COMPUTING return O;
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#include <iostream>
After #include <cmath>

$ ./a.out double sqrt583(double& z) {
1.41421
1.41421 s d < 59 sed)

(xxx-z) / (2.0%x) ;

y is passed by reference (not 1.e-9) break;
copied), so the original is changed
’// Z = X;
This variable return x;
}
Is this variable — _int main ) {
dou = 2.0;

std::cout << sqrtb83(y) << std::endl;
std::cout << y << std::endl;

NORTHWEST INSTITUTE for ADVANCED COMPUTING return O;
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Thought experiment

#include <rostream>
#include <cmath>

double sqrt583(double &z) {

This variable

double x = 1.0;

for (size_t i =
double dx =

x += dx;

Is this variable

if (abs(dx) <

1.e-9) break;

Which isn’t a variable

std::cout << sqrt583(2.0) << std::endl;

double sqrt583(double &z) {

. 1 error generated.

sqrtr2.cpp:21:16: error: no matching function for call to ’sqrt583’

sqrtr2.cpp:4:8: note: candidate function not viable: expects an l-value for

|::cout << sqrtb83(2.0) << std

| st argument

urn 0;

27
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(x*x-z) / (2.0%x) ;
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Thought experiment

#include <iostream>
#include <cmath>

Why would we want to
pass a reference?

“Out parameters”

Efficiency (no copy)

How can we do this?

NORTHWEST INSTITUTE for ADVANCED COMPUTING
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double sqrt583(double &z) {
double x 1.0;

for (size_t i =
double dx
x += dx;

if (abs(dx)

0; 1 < 32; ++i) {
(x*x-z) / (2.0%x) ;

1.e-9) break;

return Xx;

}

int main (

std: :cout << sqrtb83(2.0) << std::endl;

return O;

}

!
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#include <tostream>

Before #include <cmath>

double sqrt583(double &z) {
double x = 1.0;

for (size_t i = 0; i < 32; ++i) {

double dx = - (x*x-z) / (2.0%x) ;
x += dx;
if (abs(dx) < 1.e-9) break;

}

Z = X;

return Xx;

}

int main () {

std: :cout << sqrtb83(2.0) << std::endl;
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#include <iostream>
After #include <cmath>

double sqrt583(const double &z) {
double x = 1.0;

for (size_t i = 0; i < 32; ++i) {

double dx = - (x*x-z) / (2.0%x) ;
x += dx;
if (abs(dx) < 1.e-9) break;

}

Z = X;

return x;

int main () {
std: :cout << sqrtb83(2.0) << std::endl;

NORTHWEST INSTITUTE for ADVANCED COMPUTING return O;
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After

NORTHWEST INSTITUTE for ADVANCED COMPUTING

#include <rostream>
#include <cmath>

Promise not to change z

A referencetoa |—
constant is okay

31 AMATH 483/583 High-Performancgq
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double sqrtb83(const double &z) {
double x = 1.0;

for (size_t i = 0; i < 32; ++i) {

double dx = - (x*x-z) / (2.0%x) ;
x += dx;
if (abs(dx) < 1.e-9) break;

}

Z = X;

return x;

int main () {

std: :cout << sqrtb83(2.0) << std::endl;

return O;

+




Functions

F.2: A function should perform a single logical operation
F.3: Keep functions short and simple

F.16: For “in” parameters, pass cheaply-copied types by value and
others by reference to const

F.17: For “in-out” parameters, pass by reference to non-const

F.20: For “out” output values, prefer return values to output
parameters
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http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
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I-values and r-values

e Section 3.10 of C++ standard

* Aglvalue is an expression whose evaluation determines the expression
identity of an object, bit-field, or function. ,/ \

* A prvalueis an expression whose evaluation initializes an glvalue  rvalue

object or a bit-field, or computes the value of the operand of / \ / \
an operator, as specified by the context in which it appears. lvalue  xvalue  prvalue

* An xvalue is a glvalue that denotes an object or bit-field
whose resources can be reused (usually because it is near the
end of its lifetime).

* An lvalue is a glvalue that is not an xvalue.

* Anrvalue is a prvalue or an xvalue

NORTHWEST INSTITUTE for ADVANCED COMPUTING ~ W
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I-values and r-values

« More intuitively
 Ignore glvalue, xvalue, prvalue

expression

« |value is something that can go on the VAR
left of an assignment (correctly) glvalue  rvalue
— “Lives” beyond an expression ,/ \ ,/ \

lvalue  xvalue prvalue

« Rvalue is something that can go on the
right of an assignment (correctly)
— Does not “live” beyond an expression
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I-values and r-values

double x, v,

~e

~e

0
_|_

/ \

X
X

Zy

lvalue rvalue

double x, v,

X X
+ o
<
Ef.

N
|
!

% c++ sl7.cpp

c++ sl7.
sl7.cpp:
X + z

1 error

NORTHWEST INSTITUTE for ADVANCED COMPUTING
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expression

/N

glvalue rvalue

/NN

lvalue  xvalue prvalue

7:9: error: expression is not assignable

=y;

~

generated.
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Reusing functions

#include <iostream>
#include <cmath>

double sqrt583(double z) {
double x = 1.0;

for (size_t i = 0; i < 32; ++i) {

$ c++ main.cpp

$ ./a.out
1.4142 Compile main.cpp
Z
Translate it into a
—— language the cpu can run

$ c++ main.cpp

|

double dx = - (x*x-z) / (2.0%x) ;
x += dx;
if (abs(dx) < 1.e-9) break;

+

return x;

}

rd

The executable (program

that the cpu can run)

int main () {

r g

$ ./a.out

std::cout << sqrtb83(2.0) << std::endl;

return O;
+

ance Scientific Computing Spring 2019
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Reusing in other programs

Put this function in its own file

4/”’////’

amath583.c
#include <cmath> / PP

double sqrt583(double& z) {

BORATORY
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double x = 1.0; Many programs (mains) can call it
for (size_t i = 0; i < 32; ++i) {
double dx = - (x*x-z) / (2.0%x) ;
x += dx;
if (abs(dx) < 1.e-9) break;
}
return x; #include <iostream> #include <iostream> #include <iostream>
} #using mamespace std; #using mamespace std; #using mamespace std;
int main () { int main () { int main () {
cout << sqrtb83(3.0) << e cout << sqrt583(3.14) < cout << sqrtb83(42.0) << endl;
return O; return O; return O;
NORTHWEST INSTI T * b
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Reusing in other programs

Many mains can call it

sqrt3.cpp:8:11: error: use of undeclared identifier 'sqrt583'
#include <iostream> cout << sqrt583(2.0) << endl;
#using mamespace std; sqrt3.cpp:9:11: error: use of undeclared identifier 'sqrt583*
int main () { cout << sqrt583(3.8) << endl;
2 errors aenerated.
cout << sqrtb83(42.0) << endl;
return 0: #include <cmath> Undeclared
} /dozblilsqrt58?(goub1e z) { \ Identifler
ouble x = 1.0;
. . for (size_t i = 0; i < 32; ++i) { ~ Di ’
Deflned In a double dx = - (x*x-z) / (2.0%x) ; Dldn twe deC|are
. . x += dx; 1 ?
different file if (abs(dx) < 1.e-9) break; \ 't here:
}

NORTHWEST INSTITUTE fo [ This is definition g7V,
. :
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Reusing functions ,
$ c++ main.cpp
Doesn’t know how to $ ./a.out
translate this 1.4142 Compile main.cpp
\ —<
#include \<tostream> / Translate it into a
#using namespace std; ////Ianguagethe(xn1canrun
int main O\ { $ c++ main.cpp _J

The executable (program

cout << sqrtb83(42.0) << endl;
-1 that the cpu can run)

r g

return O; $ ./a.out

+

NORTHWEST INSTITUTE for ADVANCED COMPUTING
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Reusing functions across programs

Declare sqrt583 is a

Z

function that exists N\d&“ost”‘eaw/

Takes a double

double sqrt583(double) ;

Returns a double

Now we know
how to call it

nt main () { ///////

std::cout << sqrt583(42.0)

return O;

¥

<< std::endl;
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Reusing in other programs

#include <iostream> Many mains can call sqrt583

double sqrt583(double);

Undefined symbol

int main () {

std::cout << sqrt583(42.0) << sxd: :{
Linker command failed

return O; !

} Undefined symbols for archjfecture x86_64:
"sqrt583(double const&)", referenced from:
_main in sqrt3-

1d: symbol(s) not fgund for architecture x86_64
clang: error: linker command failed with exit code 1 (use -v to see invocation)

e ol e o o o o |
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Reusing functions

$ c++ main.cpp

$ ./a.out
1.4142 P Compile main.cpp
#include <iostream>
Translate it into a
double sqrt583(double);
B b L < language the cpu can run
int main () { $ c++ main.cpp -J
std::cout << sqrt583(42.0) << std::endl; The executable (program
that the cpu can run
return O; < P )
} $ ./a.out

Needs to find sqrt583
somewhere
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Reusing in other programs

#include <iostream>

Compile main.cpp with
sqrt583.cpp

double sqrt583(double);

int main () {

std::cout << sqrt583(42.0) << std::endl; Translate it into a
S Ianguage the cpu can run
’ $ c++ main.cpp sqrt583 Cpp I

#include <cmath>

The executable (program
double sqrt583(double z) {
double x = 1.0; -1 that the cpu can run)

for (size_t i = 0; i < 32; ++i) { -
double dx = - (x*x-z) / (2.0%x) ; $ . /aoOU-t
x += dx;
if (abs(dx) < 1.e-9) break;

+

return Xx;

}
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Reusing in other programs

#include <iostream>
double sqrt583(double);

int main () {

return O;

3

std::cout << sqrtb583(42.0) << std::endl;

Compile main.cpp by
itself

\

$ c++ main.cpp

Compile sqrt583.cpp by
itself

#include <cmath>

double sqrt583(double z) {
double x = 1.0;

L\

for (size_t i = 0; i < 32; ++i) {

}

NORTHWEST INSTITUTE for ADVANCED COMPUTING

)
.

N\

$ c++ sqrtb83.cpp

Another step here

Generate executable

double dx = - (x*x-z) / (2.0%x) ;
x += dx;
if (abs(dx) < 1.e-9) break;

}

return Xx;

$ ./a.out

AMATH 483/583 High-Performance Scientific Computing Spring 2019
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Reusing in other programs

#include <iostream>

L | need to declare it

double sqrt583(double); |
int main () {

std::cout << sqrt583(42.0) << std:.:endi+ |f | am g0|ng to Ca” th'S

return O;
}

But a real program uses

#include <iostream> many funCtionS

double sqrt583(double);
int main () {

std::cout << sqrtb83(42.0) << std::endl;
std::cout << exptb83(42.0. pi) << std::endl;
std::cout << sinb83(42.0 * pi) << std::endl;
/)

return O;
i 45
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Reusing in other programs

And | could declare each

of them individually
double sqrt583(double); |

double expt583(double, double);
double sin583(double, double); —— But why?
/) |

But a real program uses

many functions
|

But if not, how are these

declarations found?
|

#include <iostream>

int main () {

std::cout << sqrtb83(42.0) <<-stq::
std::cout << exptb83(42.0. pi) << 3
std::cout << sinb83(42.0 * pi) << std::e
/S

return O; . .
} Hint: iostream
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Header files: Interface declarations

ARSUTUE SPOBURELT Include // amathb583.hpp: Declarations
#include " th583. hpp " e
rernae e rr amath583 hpp double sqrt583(double);
e e () 40 : double expt583(double, double);
ouble sin583(double, double);
std::cout << sqrt583(42.0) << std::endl; /.
std::cout << expt583(42.0. pi) << std::endl;
std::cout << sinb83(42.0 * pi) << std::endl; /
/.

Declare all functions in

return 0; $ c++ main.cpp

) amath583.hpp

#include <cmath> I I

#include "amath583.hpp" _ Include $ c++ sqrt583.cpp
double sqrt583(double z) {
double x = 1.0; amath583hpp
for (size_t i = 0; i < 32; ++i) {
double dx = - (x*x-z) / (2.0%x) ;
x += dx; 1
o ) < 1.0y b | Implement all functions
¥ in amath583.cpp
return X;
}
// ct h-Performance Scientific Computing Spring 2019 ","‘ = . UNIVERSITY of
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Review

« What is the difference between a function declaration and a function
definition?

« Which do you need in order to be able to call a function from your
code?

 Where do function declarations usually go?

 Where do function definitions usually go?

NORTHWEST INSTITUTE for ADVANCED COMPUTING
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Program (file) organization (in pictures)

amath583.hpp

// amath583.hpp: Declarations
double sqrt583(double);

double expt583(double, double);
double sin583(double, double);
VA

amath583.cpp

C++ main.cpp amath583.cpp

compiler

#include <tostream>
#include "amathb583.hpp"

int main () {

/Y

return O;
}

std::cout << sqrt583(42.0) << std::endl;
std::cout << expt583(42.0. pi) << std::endl;
std::cout << sinb83(42.0 * pi) << std::

#include <cmath>

double x = 1.0;

for (size_t i =
double dx = -
x += dx;

endl; if (abs(dx) <

}

return x;

49

#include "amath583.hpp"

double sqrt583(double z) {

0; i < 32; ++i) {
(xxx-z) / (2.0%x)

1.e-9) break;

>

W
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Refined program organization (in pictures)
Object file

// amath583.hpp: Declarations
double sqrt583(double);

double expt583(double, double);
double sin583(double, double);
/AT

amath583.hpp compiler amath583.0 s

amath583.cpp
compiler

main.cpp

#include <tostream> #include <cmath>
#include "amath583.hpp" #include "amath583.hpp"

compiler S

double sqrt583(double z) {
double x = 1.0;
for (size_t i = 0; i < 32; ++i) {
double dx = - (x*x-z) / (2.0%x) ;
x += dx;
if (abs(dx) < 1.e-9) break;

int main () {

std::cout << sqrt583(42.0) << std::endl;

std::cout << expt583(42.0. pi) << std::endl;
std::cout << sinb83(42.0 * pi) << std::endl;
/). 3

return Xx;
return O; }
¥ /o
50 AMA
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Multifile Multistage Compilation

Compile main.cpp to
main.o object file

Tell the compiler to
generate object

/

$ c++ -c main.cpp -o main.o

Tell the compiler

name of the object

$ c++ -c amath583.cpp -0 amath583.0

$ c++ main.o amathb583.0 -o main.exe
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Multistage compilation (pictorially)

$ c++ -c main.cpp -o main.o

$ c++ -c main.cpp -o main.o

Mmain.exe

$ c++ main.o amath583.0 -0 main.exe
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Recompiling

If this changes

\

If this changes

Need to
compile again

——

Or if this
changes

Need to
compile again

NORTHWEST INSTITUTE for ADVANCED COMPUTING
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Dependencies

* main.o depends on main.cpp and amath583.hpp
« amath583.0 depends on amath583.cpp
* main.exe depends on amath583.0 and main.o

NORTHWEST INSTITUTE for ADVANCED COMPUTING
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Automating: The Rules

 If main.o is newer than main.exe
« If amath583.0 is newer than main.]
 If main.cpp is newer than main.o :
 If amath583.cpp is newer than am
 If amath583.hpp is newer than ma

NORTHWEST INSTITUTE for ADVANCED COMPUTING
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Make

 Tool for automating compilation (or any other rule-driven tasks)
* Rules are specified in a makefile (usually named “Makefile”)

* Rules include main.exe: main.o amath583.0
_ Dependency c++ main.o amath583.0 -o W Dependencies
— Target main.o: main.cpp amathb583.hpp
— Consequent ct++ -c main.cpp -0 main.o —_—

Consequent

amathb83.0: amathb83.cpp
c++ -c amathb83.cpp -o amathb83.o0

Target

NORTHWEST INSTITUTE for ADVANCED COMPUTING
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Make

Tool for automating compilation (or any other rule-driven tasks)
Rules are specified in a makefile (usually named “Makefile™)
Rules include

$ make
— Dependency c++ -c main.cpp -o main.o
— Target c++ -c amath583.cpp -o amath583.0
— Consequent c++ main.o amathb583.0 -0 main.exe

Edit amath583.hpp $ make

ct++ —-C main.cpp -0 main.o
c++ main.o amathb583.0 -0 main.exe

NORTHWEST INSTITUTE for ADVANCED COMPUTING
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Computational Science Find P that
P _— | satisfies this

V-P = f, in

[P-No] = [t] on Sy
Differential Eqns P-No = t on 88%0 (too hard)

Find x that
satisfies this

/ (too hard)

discretize

Find x that
satisfies this

linearize
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Computational Science

The fundamental computation at the core of many (most/all)
computational science programs is solving Az = b

Assume ,b € RY and A € RNVXN

|.e., x and b are vectors with N real elements and A is a matrix with
N by N real elements

Solution process only requires basic arithmetic operations
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Neural Network
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Zoom In On One ”Neuron’

Sigmoid functen

w /
5130 0 xo
w
X1 )
; hehald
wy/ ‘
'CEN—l
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Zoom In On One ”Neuron’

ry = o(t)
Wy /
Z( X t = woTo +wiTy + -+ W, T,
1 w N-1
w -1 ’L:O
N

N-1
Ty = O'(Z W;T;)
i=0
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Zoom In On Two “Neurons”

w /
5130 0 xo
w
L1
Wy 4
xN—l
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Zoom In On Two “Neurons”
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Zoom In On Two “Neurons”
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Zoom In On Two “Neurons”
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Zoom In On Two “Neurons” - (
(

vt = S(Wz°)

[

vector matrix vector
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Mathematical Vector Space

Definition. (Halmos) A vector space is a set V' of elements called vectors satisfying the following axioms:

1. To every pair x and y of vectors in V' there corresponds a vector x + y called the sum of x and y in
such a way that ’

‘ iativ '
commutative associative We need to be able to
addition is commutative, r + y =y + x

(a)
(b)
(c)

)

(d) to every vector x in V there corresponds a unique vector —x such that| x + (—x) =0

add 2 vectors = vector

addition is associative, x + (y + 2z) = (x + y) + 2

there exists in V' a unique vector 0 (called the origin) such that x + 0 = z for ever vector x, and

2. To every pair a and x where a is a scalar and z is a vector in V', there corilesponds a vector ax in V
called the product of a and = in such a way that '

Identity over +

(a) multiplication by scalars is associative a(bx) = (ab)z, and

|
_ . ~— . .
(b) 1z = x for every vector x. — Identity over x associative L distributive
3. (a) Multiplications by scalar is distributive with respect to vector addition. a(z + yJ # ax + ay

b) multiplication by vetors is distributive with respect to scalar addition (a +b)x = ax + b
NORTHWEST INSTITUTE for ADVANCED COMPUTING _ , W
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Mathematical Vector Space Examples

Definition. (Halmos) A vector space is a set V' of elements called vectors satisfying the following axioms:

1. To every pair z and y of vectors in V' there corresponds a vector x + y called the sum of z and y in
such a way that
(a) addition is commutative, z +y =y + x
(b) addition is associative, z + (y + 2) = (z + y) + z
(c) there exists in V' a unique vector 0 (called the origin) such that = + 0 = z for ever vector z, and
(d) to every vector x in V there corresponds a unique vector —z such that @ + (—z) =0

2. To every pair a and x where a is a scalar and « is a vector in V, there corresponds a vector ax in V'
called the product of a and x in such a way that

a) multiplication by scalars is associative a(bz) = (ab)z, and

(

(b) 1z = x for every vector x. The Vector S ace
3. (a) Multiplications by scalar is distributive with respect to vector addition. a(z + y) = ax + ay p
(

b) multiplication by vetors is distributive with respect to scalar addition (a + b)z = az + by u S e d i n SC i e ntifi C

« Set of all complex numbers computing
« Set of all polynomials

« Set of all n-tuples of real numbers RN
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Computer Representation of Vector Space

Definition. (Halmos) A vector space is a set V' of elements called vectors satisfying the following axioms:

1. To every pair x and y of vectors in V' there corresponds a vector x + y called the sum of x and y in
such a way that ’

‘ iativ '
commutative associative We need to be able to
addition is commutative, r + y =y + x

(a)
(b)
(c)

)

(d) to every vector x in V there corresponds a unique vector —x such that| x + (—x) =0

add 2 vectors = vector

addition is associative, x + (y + 2z) = (x + y) + 2

there exists in V' a unique vector 0 (called the origin) such that x + 0 = z for ever vector x, and

2. To every pair a and x where a is a scalar and z is a vector in V', there corilesponds a vector ax in V
called the product of a and = in such a way that '

Identity over +

(a) multiplication by scalars is associative a(bx) = (ab)z, and

TP L

distributive
3. (a) Multiplications by scalar is distributive with respect to vector addition. a(z Ty

(b) 1z = x for every vector x. — Identity over X — associative

b) multiplication by vetors is distributive with respect to scalar addition (a +b)x = ax + b
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Computer Representation of Vector Space

In the bad old days, vectors represented as arrays

REAL X(N)
REAL Y(N)
« Add them CALL SAXPY(N, ALPHA, X, Y) Y «— aX +Y
« Double precision N | N
DOUBLE X (1) TV\]:O dll‘ferent For sa;ne
DOUBLE Y(N) unctions operation
//// e
« Add them CALL DAXPY(N, ALPHA, X, V) Y <~ aX +Y
for (int i = 0; int < N; ++i) y[i] += alpha * x[i];
\

For same

NORTHWEST INSTITUTE for ADVANCED COMPUTING
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Vectors Spaces in C++

« Despite the clumsiness of Fortran interface (or maybe because of it)
the performance of vector operations was quite good

* In C/C++, there are numerous options for vectors (and matrices)

Not dynamically
sizable*

double x[N]; —

Memory

double *x = malloc (N x sizeof (double));—
management hell

vector<double> x(N); ___ | Limited to interface of

vector<double> (not a vector)

Vector X(HLL

- Just right, or very wrong
We can define interface and implementation

NORTHWEST INSTITUTE for ADVANCED COMPUTING ~ A
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Vectors Spaces in C++

« Despite the clumsiness of Fortran interface (or maybe because of it)

the performance of vector operations was quite good

* In C/C++, there are numerous options for vectors (and matrices)

double A[M] [N]5—

Not dynamically
sizable*

P

double *xxA = _?7;

Memory management
hell squared

vector<vector<double> > x (N);

Matrix A (M, N)|;

Really easy to get bad
performance

—_| Not a matrix (or a 2D array for

that matter) at all

Just right, or very wrong
We can define interface and implementation
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Classes

 First principles: Abstraction, simplicity, consistent specification
« Domain: Scientific computing

« Domain abstractions: Matrices and vectors

 Programming abstractions: Matrix and Vector

« C++ classes enable encapsulation of related data and functions

 Provides visible interface
« Hides implementation
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std::vector<double>

Before rushing off to implement fancy interfaces
Understand what we are working with

And how hardware and software interact
std::vector<double> will be our storage

But its interface won’t be our interface HERVIARE
— We will gradually build up to complete Vector &

— And complete Matrix
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The Standard Template Library

 In early-mid 90s Stepanov, Musser, Lee applied |
principles of generic programming to C++

) ALEXANDER STEPANOV ¢

« Leveraged templates / parametric polymorphism
std: :set std::for_each
std::1list ForwardIterator std::sort
Elements of
std: :map Reverselterator std::accumulate Programming
std: :vector RandomAccesslterator std::min_element J——
Alexander Stepanov and Paul McJones.

2009. Elements of Programming (1st
ed.). Addison-Wesley Professional.
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Generic Programming

« Algorithms are generic (parametrically polymorphic)

« Algorithms can be used on any type that meets algorithmic reqts
— Valid expressions, associated types

— Not just std. ::types

S

Standard Library container

vector<double> arrary(N);

std::accumulate (array.begin(), array.end(), 0.0);

/

iterator

\

\\\\\\\\\\

iterator

Initial value
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std Containers

 Note that all containers

have same interface
 (Actually a hierarchy,

we’ll come back to this)

« We will primarily be
focusing on vector

NORTHWEST INSTITUTE for ADVANCED
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Headers <vector> <deque> <list>
Members vector deque list
constructor |vector deque list
operator= operator= operator= operator=
terators begin begin begin begin
end end end end
Size size size size
capacity max_size max_size max_size max_size
empty empty empty empty
resize resize resize resize
front front front front
T bk ek bk bk
operator(] operator|] operator(]
insert insert insert insert
erase €rase €rase €rase
modifiers push_back |push back |[push back |push back
pop_back pop back pop back pop back
swap swa
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http://www.cplusplus.com/%3cvector%3e
http://www.cplusplus.com/%3cdeque%3e
http://www.cplusplus.com/%3clist%3e
http://www.cplusplus.com/vector
http://www.cplusplus.com/deque
http://www.cplusplus.com/list
http://www.cplusplus.com/vector::vector
http://www.cplusplus.com/deque::deque
http://www.cplusplus.com/list::list
http://www.cplusplus.com/vector::operator=
http://www.cplusplus.com/deque::operator=
http://www.cplusplus.com/list::operator=
http://www.cplusplus.com/vector::begin
http://www.cplusplus.com/deque::begin
http://www.cplusplus.com/list::begin
http://www.cplusplus.com/vector::end
http://www.cplusplus.com/deque::end
http://www.cplusplus.com/list::end
http://www.cplusplus.com/vector::size
http://www.cplusplus.com/deque::size
http://www.cplusplus.com/list::size
http://www.cplusplus.com/vector::max_size
http://www.cplusplus.com/deque::max_size
http://www.cplusplus.com/list::max_size
http://www.cplusplus.com/vector::empty
http://www.cplusplus.com/deque::empty
http://www.cplusplus.com/list::empty
http://www.cplusplus.com/vector::resize
http://www.cplusplus.com/deque::resize
http://www.cplusplus.com/list::resize
http://www.cplusplus.com/vector::front
http://www.cplusplus.com/deque::front
http://www.cplusplus.com/list::front
http://www.cplusplus.com/vector::back
http://www.cplusplus.com/deque::back
http://www.cplusplus.com/list::back
http://www.cplusplus.com/vector::operator%5b%5d
http://www.cplusplus.com/deque::operator%5b%5d
http://www.cplusplus.com/vector::insert
http://www.cplusplus.com/deque::insert
http://www.cplusplus.com/list::insert
http://www.cplusplus.com/vector::erase
http://www.cplusplus.com/deque::erase
http://www.cplusplus.com/list::erase
http://www.cplusplus.com/vector::push_back
http://www.cplusplus.com/deque::push_back
http://www.cplusplus.com/list::push_back
http://www.cplusplus.com/vector::pop_back
http://www.cplusplus.com/deque::pop_back
http://www.cplusplus.com/list::pop_back
http://www.cplusplus.com/vector::swap
http://www.cplusplus.com/deque::swap
http://www.cplusplus.com/list::swap

std Containers

* std containers “contain” elements

| vector of doubles
vector<doubl rray (N) ;

/ vector of ints
vector<int> array (N);

| listof vectors of complex doubles

list<vector<complex<double> > > thing;

* Implementation of list, vector, complex is the same regardless of what
IS being contained
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Generic Programming

« Algorithms are generic (parametrically polymorphic)

« Algorithms can be used on any type that meets algorithmic reqts
— Valid expressions, associated types
— Not just std. ::types

— Standard Library container

list<vector<complex<double> > > thing(N);

std::accumulate(ti}pg.begin(), thing.end(Lk\g;Eii\

iterator iterator Initial value
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std Containers

« The std containers are class templates (not “template classes”)

template <typename T> class vector;
template <typename T> class dequeue;
template <typename T> class 1list;

| [ T~

_ The template
What follows is P _ A class
a template parameter s a template
type placeholder
 Don’t need details for now vector<double>

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : LM,,,MR . ' _UNIVERSITYo f
University of Washington by Andrew Lumsdaine ! Sl b




Our goal

« Extract maximal performance from one core, multiple cores, multiple
machines for computational (and data) science

« Two algorithms: matrix-matrix product, (sparse) matrix-vector product

A, B,C € RN*N C=AxB C%j:=jzjfhkf%j
: HARWARE

Matrix A(M,N);

for (int i = 0; i < AN; A+i)

for (int j = 0; j <AN; ++j)
What does for (int k = 0; k < N; ++k)
the hard- ——  ¢(i,j) += A(i,k) * B(k,j) SOFTWARE

ware do?
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Classes

 First principles: Abstraction, simplicity, consistent specification
« Domain: Scientific computing

« Domain abstractions: Matrices and vectors

 Programming abstractions: Matrix and Vector

« C++ classes enable encapsulation of related data and functions

 Provides visible interface
« Hides implementation
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Vector desiderata

- Mathematically we say let v & RY
 There are N real number elements
» Accessed with subscript

* (Vectors can be scaled, added)

* Programming abstraction
» Create a Vector with N elements
* Access elements with “subscript”
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Using Vector class

int main() {
size_t num_rows = 1024;

Vector v1(num_rows);

for (size_t i = 0; i < vi.num_rows(); ++i) {
vi(i) = 1i;

¥

return O;
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Using Vector class
Declare (construct) a Vector

int main() { with num_rows elements
size_t num_rows = 1024;

Vector v1(num_rows); Get its size

—

for (size_t i = 0; i < vl.num_rows(); ++i) {
vi(i) = 1i;

——

¥ Index each element

Vector v2 (v1);
Vector v3 = vi;
v3 = v2;

Copy (assign) in various ways

return O;
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Using Vector class

int main() {
size_t num_rows = 1024;

Declare (construct) a Vector
with num_rows elements

Get its size

Vector v1(num_rows) ; ””””’fffff

for\(size_t i = 0; i < vil.num rowsO—+—+riy <

Index each element

vi\(i) = 1i;

by

Copy (assign) in various ways

VectoY v2 (v1);

Vecton v3 = vi;

3 = vb; Interface vs

}

Implementation
return V;

Know nothing about what a

w Vector is — only how to use it

er University of Washington by Andrew Lumsdaine




Anatomy of a C++ class Declares an Hides
P interface implementation

class Vector {
public:
Vector(size_t M) : num_rows_(M), storage_(num_rows_) {}

double& operator() (size_t i) { return storage_[i]; }
size_t num_rows() const { return num_rows_; }
private:

size_t num_rows_;
std: :vector<double> storage_;

};
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Anatomy of a C++elace _ _
— Define a new class —= A class is a “recipe” K

class Vectar { ... | for objects
public: Name of the class
Vector(size_t M) : num_rows_(M), storage_(num_rows_) k}

double& operator() (size_t i) { retury storage_[il; }

size_t num_rows() const { return nuh_rows_; }

. . A class is a user-
private: _
size t e defined type
std: :vector<double> storage_; ‘/
I Objects are variables

And hides | Interface specifies of that type

implementation how to use objects A 7]
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Anatomy of a C++ class

Create a Vector with

class Vector { n elements (M)
public:

Vector(size_t M) : num_rows_(M), storage_(num_rows_) {}

double& operator() (size_t i) { return storage_[il; }

size_t num_rows() const { retu num_rows_; J*

private:
size_t num_rows_;

Access elements
with a subscript

std: :vector<double> storage_;

};
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Anatomy of a C++ class
Constructor (function

class Vector { ' that makes new object)
public:
Vector(size_t M) : num_rows_(M), storage_(num_rows_) {}

doubl;;\zférator()(size_t i) { return storage_[il; }

size_t num_r%ws() const { return num_rows_; }

size t num_rows_; | constructor is the same
std: :vector<(#1ouble> storage_; as the name of the class

};

This constructor function

m takes one argument
o cientific Computing Spring 2019 ‘ NA:A::?; :‘Y  UNIVERSITY .
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Anatomy of a C++ class

class Vector {
public: —

Everything following

the public: declaration
is public

double& op
size t num_rows() c

private:
size_t num_rows_;
std: :vector<double> storage_;

};

Vector(size_t M) : num_rows_(M), storage_(num_rows_) {}
tor() (size_t i) { return storage_[il; }

t { return num_rows_; }

Code outside of the object
can access public members
(functions or data)
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Anatomy of a C++ class

Three public member

class Vector { functions

public:
Vector(size_t M) : num_rows_(M), storage_(num_rows_\ {}

double& operator() (size_t i) { return s e_[il; }
size_t num_rows() const { retur _rows_; 1} Constructor
private: Subscript
size_t num_rows_;
std: :vector<double> storage_; “size”
s
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Anatomy of a C++ class

Everything following

class Vector {
public:
Vector(size t M) : num_row

double& operator () (

size_ t num_r

private:

M), storage_(num_rows_) {}
e_t i) { return storage_[i]; }

() const { return num_rows_; }

| the private: declaration
IS private

size_t num_rows_;
std: :vector<double> storage_;

};

Code outside of the object
can not access private
members (functions or data)

But member

Prolly Operaied by Basese UNIVERSITY of
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Anatomy of a C++ class

public:

private:
size_t

Y

Vector(size t M)

class Vector {

double& operator() (size_t i) { return storage_[il; }

size_t num_rows() const { return num_rows_; }

And to

: num_rows_(M), storage_(num_rows_) {}

what?

num_rows_; —

std: :vector<double> storage_;

N~

Store the size of
the Vector

/

And when? How do we set these to |
! ' the right size, right value? #____

Store the n elements of the
Vector as a
std::vector<double>

UNIVERDIL T 0F
WASHINGTON




Anatomy of a C++ class

class Vector {
public:
Vector(size_t M) : num_rows_(M), storage_(num_rows_) {}

double& operator() (size_t i) { return storage_[il; }

size_t num_rows() const { return num_rows_; }

private: Store the number
size_t num_rows_; — | of elements

std: :vector<double> storage_;

+; Store the n elements of the
Vector as a

std::vector<double>

Proxly Operated by Bavese
fox the LS. Department of Enen
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Using Vector class

int main() {
size_t num_rows = 1024;

Declare (construct) a Vector
with num_rows elements

Vector v1(num_rows);

for (size_t i = 0; i < vi.num_rows(); ++i) {
vi(i) = 1i;

+

Vector v2 (v1);

Vector v3 = vi;

v3 = v2;

return O;
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Anatomy of a C++ class
The number of

class Vector { elements
public:

Vector(size_t M) : num_rows_(M), storage_(num_rows_) {}

double& operator() (size_t i) { return storage_[il; }

size_t num_rows() const { return num_rows_; }

private: In the constructor we
size_t num_rows_ ,/ want to set this to M
std::vector<double> storage_;
}; And make this num_rows
elements long
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Anatomy of a C++ class
The constructor is And it has a body

class Vector { a function
public:

Vector(size_t M) : num_rows_(M), storage_(num_rows_) {}

double& operator() (size_t i) { return storage_[il; }
size_t num_rows() const { return num_rows_; }

private:
size_t num_rows_;
std: :vector<double> storage_;

};
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One option for initialization

class Vector { Set num_rows_to M
public:
Vector(size_t M)

Construct storage_ with
num_rows_ elements

num_rows_ = M; ’7//’
storage = std::vector<double>(num_rows?);
¥

size_t num_rows() const { return num_rows_; }

private:

!};

size_t num_rows_;
std: :vector<double> storage_;

double& operator() (size_t i) { return storage_[il; }

University of Washington by Andrew Lumsdaine
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Preferred initialization

class Vector {

Set num_rows_to M

public:
Vector(size t M)

private:
size_t

};

std: :vector<double> storage_;

formed before body

Object is well-

of function

num_rows_ (M), storage_(num_rows_;\§}

!

double& operator() (size_t i) { retufn storage_[il; }

size_t num_rows() const { return nym_rows_; }

num_Yrows_;

Construct storage
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Using Vector class

int main() {
size_t num_rows = 1024;

Vector v1(num_rows);

for (size_t i = 0; i < vi.num_rows(); ++i) {
vi(i) = 1i;

}

Vector v2 (v1);

Vector v3 = vi;

v3 = v2;

return O;

Access num_rows

Call the num_rows()
member function for
object v1

NORTHWEST INSTITUTE for ADVANCED COMPUTING
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Member function

Just a function Function body

class Vector {
public:
Vector(size_t M)/ : num_rows_(M), storage_(num_rows_) {}

double& operafor() (size_t i) { refirn storage_[il; }

size_t num_rows (3—const { return num_rows_; }

N

private: Returns a size_t

| Takes no arguments

size_t num_rows_;
std: :vector<double> storage_;

};
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Member function

class Vector {
public:
Vector(size t M)

private:
size_t

};

Interface in

Vector.h
’//,/’ PP

num_rows_(M), storage_(num_rows_) {}

size_t num_rows() const;

\

num_rows_;

std: :vector<double> storage_;

double& operator() (size_t i) { return storage_[il; }

Function declaration
(implementation

elsewhere)

_‘,//’

Implementation
in Vector.cpp

104
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Member function

class Vector {
public:

Vector(size_t M)/;;guﬁfrows_(M), storage_(num_rows_) {}

Subscript

double& operator() (size_t i) { return storage_[il; }

size_t num_rows() const eturn num_rows_; JF
private:

size_t num_rows_; In our next

std: :vector<double> storage_; exciting episode

};
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C++ Core Guidelines related to classes

C.1: Organize related data into structures (structs or classes)

C.3: Represent the distinction between an interface and an
implementation using a class

C.4: Make a function a member only if it needs direct access to the
representation of a class

C.10: Prefer concrete types over class hierarchies
C.11: Make concrete types reqular

NORTHWEST INSTITUTE for ADVANCED COMPUTING \V(/ W
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http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

Thank you!
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Example with Input

All variables in

#include <iostream>
C++ must be typed!

#include <string>

Variable type is a
int main () { std::string

~

std::string contents;

Variable declaration

—| Variable nameiis
contents

Input Object ___ std::cin >> contents;

std::cout << contents << std::endl;

return O;
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Result

S c++ demo.cpp
$ ./a.out
Today 1s a good day for HPC!

Today

« Explain
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Aside (Standard 1/O)

 When text is entered into bash, it is accumulated and sent to the
program after CR is entered (there are ways to change this: stty)

statccoaih std:cout
std:cerr — std:cerr
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Example
$ wc

Word count

int main() {

Tty input (all the

(man wc) / hello world text)

std: :cout << "Hello World" << std::endl;

return O;

+

pipe

4 2

$ cat b.cpp | wc
7 —

4 12

70 —

4 lines, 12 words,
70 characters

$ we b.cpp—

4 12 70 b.cpp

—
Read contents

Pipe the text from

b.cpp into wc

from b.cpp
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Explanation

 When text is entered into bash, it is accumulated and sent to the
program after CR is entered (there are ways to change this: stty)

« This entire string is put into the input stream of the program
Today 1s a good day for HPC!

 cin tokenizes the input stream Today is a good day for HPC!

int main() { Reads first token I I I I I I I
std::string contents; only: Today token| to tokerl token| toker| toker token

std::cin >> contents;
std::cout << contents << std::endl;___________

Prints contents
(first token: Today)

return 0;

}
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Next Attempt

int main () { ++
std::string contents; $ ¢ demo2. Cpp
$ ./a.out
std::cin >> contents; .
std::cout << contents; TOday 1S a gOOd day fOI‘ HPC|
TodayisagooddayforHPC!

std::cin >> contents;
std::cout << contents;

std::cin >> contents; PY E I 1
std::cout << contents; Xp aln
std::cin >> contents;

std::cout << contents;

std::cin >> contents;
std::cout << contents;

std::cin >> contents;
std::cout << contents;

std::cin >> contents;
std::cout << contents;

std::cin >> contents;
std::cout << contents << std::endl;

return 0;
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Yet Another Attempt

#include <string>

#include <iostream> $ . /a. Out
int main() | Today is a good day for HPC!
std::string contents; Today is a good day for HPC!

std::cin >> contents;
std::cout << contents << " ";

std::cin >> contents; - $ . /a . Out StUCk

std::cout << contents << " ",

std::cin >> contents; TOday is a gOOd da.y fOI‘/

std::cout << contents << "_"; .
std:icin >> contents; Today is a good day for
std::cout << contents << "_"; One more

std::cin >> contents;
std::cout << contents << "_";

std::cin >> contents; - $ J /ao Out tOken
staricin 5> contentes Today is a good day for /
std::cout << contents << std::endl; Today ls a good day‘ for HPC
return O; I{I)(:

Final token
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What Else is Wrong?

#include <string>
#include <iostream>

int main() { $ ./a.out
std::string contents; Today is a good day for HPC!
| Today is a good day for HPC!

std::cin >> contents;

std::cout << contents << "_";

std::cin >> contents;

std::cout << contents << "_";

std::cin >> contents;

std::cout << contents << "_";

std::cin >> contents;

std::cout << contents << "_";

std::cin >> contents;

std::cout << contents << "_";

std::cin >> contents;

std::cout << contents << "_";

std::cin >> contents;
std::cout << contents << std::endl;

return O;

NORTHWEST INSTITUTE for ADVANCED COMPUTING \7’/ 'W'
Pac'rﬁgNorthwest / /s

IONAL LABORATORY

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of

117 WASHINGTON



Getting a Line of Input

« Use std::getline() ; $ ./a.out
getline() Today is a good day for HPC!
#include <iostream> function Today is a good day for HPC!

#include <string>

Stream to get
int main() { 5 Where to put

line from the line
std::string Contenfs;

std::getline(std::cin, contents);

std::cout << contents << std::endl; * Gets entire line of text, with
no tokenization

 Make sure you understand
getline() vs >>

return O;
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Types
Variable type| Variable name
« Variable definition _
/ /
std::string contents; | VVariable hame
int x;
double y; —

T~

Variable type

« C++ has many built-in types: int, double, char, etc
« Other types are defined for libraries (accessed via #include)

« Almost always class definitions
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Declaring and Initializing Variables

* In the old days variables were « Now they can be defined

declared at the beginning of a anywhere in the block
block . .
int main () {

int main () { /).
double x, y; —| Declaration double x = 3.14159;
22mee double v = x x 2.0;
x = 3.14159; /) .. ; .
y = X * 2.0;\\\ return O;\\\\\ Dgckﬁayon}NWh
VYA Use \ initialization
return O; : _

} « Best practice: Don’t declare variables before

they are needed and always initialize if possible
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More about string

Declare
std::string s; — empty string
std::string t = "Hello World";

std::string u = t; —__ | Declare string

std::string v = s +

and copy from t

Declare string object and
initialize with characters
(Note “Hello World” is not
a C++ string object)

int length = v.size();

\
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+ operator concatenates
two string objects

size member function
returns length of string
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Example

#include <iostream>
#include <string>

int main () {

std::string msg_1 = "Hello";

std::string msg_2 = "World";

std::string message = msg_1 + " " + msqg_2;
int msg_length = message.size();

std::cout << "There_are " << msg_length << " characters_in";
std::cout << "\"" << message << "\"" << std::endl;

return 0O;
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