NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583
High Performance Scientific Computing

Lecture 3:
Functions, Multiple Compilation, Data Abstraction

Andrew Lumsdaine

Northwest Institute for Advanced Computing
Pacific Northwest National Laboratory
University of Washington

Seattle, WA

Overview

Recap of Lecture 2

— Types and variables
— Namespaces

* Functions and procedural abstraction

« Parameter passing

* Program / file organization
 Make and Makefile

« Back Propagation

* Vector and Matrix

NORTHWEST INSTITUTE for ADVANCED COMPUTING
P e v

AMATH 483/583 High-Performance Scientific Computing Spring 2019 PN — [_UNIVERSITYo
University of Washington by Andrew Lumsdaine el b

SC’19 Student Cluster Competition Call-Out!

« Teams work with advisor and vendor to design and build a cutting-edge,
commercially available cluster constrained by the 3000-watt power limit

 Cluster run a variety of HPC workflows, ranging from being limited by CPU
performance to being memory bandwidth limited to I/O intensive

Teams are comprised of six undergrad or high-school students plus advisor
fhttps://sc19.supercomputing.or{?
/program/studentssc/student-
_cluster-competition/)

(-)

Informational meeting:
Tu 5PM-6PM Allen 203
L Th 5PM-6PM Allen 203)

NORTHWEST INSTITUTE for ADVANCED COMPUTING

Pacific Northwest
1ag) NATIONAL LABORATORY

IIIIIIIIIII
Proodly Operated by Batese
for the ULS. Department of Energy

One Quick Definition

- FLOP

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 / e UNIVERSITY of
. . . N for Kegy WASHINGTON
University of Washington by Andrew Lumsdaine /

Interpreted language (Python)

Another
program
lmport math Interpreter
(A program that runs your
a = 3.14 program)
b = math.sqrt(a)
print (b)

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 - S (UNIVERSITY of ‘
University of Washington by Andrew Lumsdaine | - o :

Compiled language

Your
program

int main () {
int a = 1; Your program running
double x = 0.3; (Under control of the OS)
foo(x,a);

}

\/

Assembly Code _ Object Code
(Another language) (Another language — binary)

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 ,"‘ e - UNIVERSITY of
. . . : / - ot of Emecsy WASHINGTON
University of Washington by Andrew Lumsdaine |

Interpreted vs compiled

Use functions
from iostream

library <cmath>

Use math Call function from
library math library
1 7
\ Curly braces

#include <itostream>

import math for code
blocks

a=3.14 |

b = math.sqrt(a)| Code must

;f:int (b) be in a

/ \\ function

Declare
variables

NORTHWEST INSTITUTE for ADVANCED COMPUTING

int main() {

double a = 3.14;

double b =

Use math
library

Call
function

std: :sqrt(a);

std: :cout << b\<< std::endl;

retyrn O;

Variables
are typed

Print
result

AMATH 483/583 High-Performa

nce Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

1O also
in std

Pacific Northwest
NATIONAL LABORATORY

Proodly Operated by Baese
for the LS. Department of Energ,

“std” rather
than “math”

/

IIIIIIIIIII

Compilation

You can’t run
this code

#include <cmath>
#include <iostream>

int main() {

double a = 3.14;

return 0;

double b = std::sqrt(a);
std::cout << b << std::endl;

An
“executable”

It needs to be
__—| turned into code
that can run

] Multi-step

N\

process

Compile to
object file

Then link in

/
Bits just for

NORTHWEST INSTITUTE for ADVANCED COMPUTING

this code

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

libraries for
sqgrt and 10

Pacific Northwest / W
NATIONAL LABORATORY

= : UNIVERSITY of
e TS gt of Evargy WASHINGTON

Declaring and Initializing Variables

* In the old days variables were « Now they can be defined

declared at the beginning of a anywhere in the block
block . .
int main () {

int main () { /).
double x, y; —| Declaration double x = 3.14159;
22mee double v = x x 2.0;
x = 3.14159; /) .. ; .
y = X * 2.0;\\\ return O;\\\\\ Dgckﬁayon}NWh
VYA Use \ initialization
return O; : _

} « Best practice: Don’t declare variables before

they are needed and always initialize if possible

NORTHWEST INSTITUTE for ADVANCED COMPUTING
P e v

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : P —— | _UNIVERSITY,
University of Washington by Andrew Lumsdaine ! S D —

Namespace Recommendation for AMATH 483/583

P.3: Express intent

= "Hello World";
<< std::endl;

Too much typing?

AMATH 483/583 High-Performance Scientific Computing Spring 2019 S UNIVERSITY of
University of Washington by Andrew Lumsdaine / ot e

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md

Organizing your programs

Abstraction

« Software development is difficult
 How do humans attack complex 7

problems?
* Apply the same principles to software
AN
* Modular / reusable Procedural

 Well defined interfaces and
functionality

 Understandable

Data type

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 e AORY | UNIVERSITY o
University of Washington by Andrew Lumsdaine / e =

NORTHWEST INSTITUTE for ADVANCED COMPUTING iz
J Pecinc pormwest

| of
o e U1, oapevtrant of Evrgy [WASHINGTON

ement of Eneng

Procedural Abstraction

Separate functionality into well-defined, reusable, pieces of parameterized code

(aka “functions”)

Newton’s Method for Square Root

To solve f(x) =0 for @

Linearize (approximate the nonlinear problem with a linear one) and
solve the linear problem

lterate
Taylor: flx + Az

2
P
&

Az f'(z) = Azf'(z)

_ _ f(=)
AT = =)
fx)=a2*—y=0—y=+z fl(zr)=2x Aa::—wz;y

Pacific Northwest /s

] NATIONAL LABORATORY |

AMATH 483/583 High-Performance Scientific Computing Spring 2019 Pty Operatod by Baese UNIVERSITY of
University of Washington by Andrew Lumsdaine ! ol

Compute square root of 2

#include <iostream>
#include <cmath>

int main () {
double x = 1.0;

for (size_t i = 0; i < 32; ++i) {
double dx = - (x*x-2.0) / (2.0%x) ;
x += dx;
if (std::abs(dx) < 1.e-9) break;

+

std::cout << x << std::endl;

return O;

NORTHWEST INSTITUTE for ADVANCED COMPUTING ~ A" V4
Paciicforitwest |

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

Compute square root of 3

#include <iostream>
#include <cmath>

int main () {
double x = 1.0;

for (size_t i = 0; i < 32; ++i) {
double dx = - (x*x-3.0) / (2.0%x) ;
x += dx;
if (std::abs(dx) < 1.e-9) break;

+

std::cout << x << std::endl;

return O;

NORTHWEST INSTITUTE for ADVANCED COMPUTING ~ A" V4
Paciicforitwest |

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

Compute square root ofg ar{rd 3

#include <iostream> wnclude <iostream> ’
#include <cmath> Don’t do the same thing |inciuge <cratn> But they’re not
St mesm) 4 twice in different places | main 0 ¢ exactly the same
double x = 1.0; double x = 1.0; /////
for (size_t i = 0; 1 < 32{/::;) { for (size_t i = 0; i <732; ++i) {
double dx = - (x*x-2.0) / (2.0%x) ; double dx = - (x*x-3.0) / (2.0%x) ;
x += dx; x += dx;
if (std::abs(dx) < 1\e-9) break; if (std::abs(dx) < 1\ e-9) break;
+ }

std::cout << x << std::endl; std::cout << x << std::e
return O; return O;
+ }
This is the only difference This is the only difference

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 / e — ,L L‘,,., o UNIVERSITY of
. . . : for the LS. Papartmant of Energy WASHINGTON
University of Washington by Andrew Lumsdaine /

Procedural Abstraction

Define function named

#include <cmath>

| double sqrt583(double y/ parameterized by y

pd double x = 1.0;
It returns
3 dOUble for (size t i =
double dx = -
X += dx;
if (abs(dx) <
It returns +
a double |\
return X;
+

sqrt583

The function is

\ |

0: i < 32; ++i) { Which is a double

(x*xx-y)/ (2.0%x) ;

1.e-9) break;

Same code Except for
as before parameterization

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 / el = (L ‘RY '''''''''''
University of Washington by Andrew Lumsdaine / s 22

Procedural Abstraction

Redundant?

////

#include <cmath>

double sqrt583(double y) {

It returns
a double

It returns
a double

N\

double x

= 1.0;

for (size_t i = 0; i < 32; ++i) {

double

dx = - (x*x-y) / (2.0%x) ;

x += dx;
if (abs(dx) < 1.e-9) break;

+

return X;

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

Compiler can deduce return t

Note auto is a

////

#include <cmath>

C++14 feature!

auto sqrt583(double y) {

It returns
a double

It returns
a double

N\

double x

= 1.0;

for (size_t i = 0; i < 32; ++i) {

double

dx = - (x*x-y) / (2.0%x) ;

x += dx;
if (abs(dx) < 1.e-9) break;

+

return X;

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

Square root of 2 and 3

Note initialization
and declaration of i

#include <iostream>
5 ude <cmath>

double sqrt583(double
double x = 1.0;

What is a size _t?

M) {
|| ouble dx = - (x*x-y) / (2.0%x) ;

x += dx;
if (abs(dx) < 1.e-9) break;

Pass

parameter 2

int _main () {

sqrt583(2.0) << std::emdl;
PaSS sqrt583(3.0) << std::endl;

parameter 3

NORTHWEST INSTITUTE for ADVANCED COMPUTING

(

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

Thought experiment

Change value of y

Printy

N\

What will print?

NORTHWEST INSTITUTE for ADVANCED COMPI

21 AMATH 483/583

\\

#include <rostream>
#include <cmath>

double sqrt583(double y) {
double x 1.0;

for (size_t i = 0; i < 32; ++i) {

double dx = - (x*x-y) / (2.0%x) ;
x += dx;
if (abs(dx) < 1.e-9) break;
\}
y =% $./a.out
1.41421
2

int maim\ () {
double = 2.0;
std: :cout %< sqrtb83(y) << std::endl;

std::cout <<y << std::endl;

return O;

3

Univer

#include <cmath>

Parameter Passing in C++ #include <iostrean>

double sqrt583(double y) {
double x = _1=

¢]

y is passed by value (copied), so only
the copy is changed, not the original

| if/ (abs(dx) < 1.e-9) break;

i = 0; i < 32; ++i) {
- (xxx-y) / (2.0%x) ;

C++ has “pass by value” semantics

int main () {
double y = 2.0;

std: :cout << sqrtb83(y) << std::endl;
std::cout << y << std::endl;

NORTHWEST INSTITUTE for ADVANCED COMPUTING return O;

29 AMATH 483/583 High-Performa }
University of Washin

#include <rostream>

Parameter Passing in C++ | .ciuie <cnatn

double sqrt583(double z) {
double x =4.0;

y is passed by value (copied), so only
the copy is changed, not the original

| i) < 1.e-9) break;

i =/0; 1 < 32; ++i) {
(xxx-z) / (2.0%x) ;

C++ has “pass by value” semantics

I
Just to be clear, the parameter can
have any name (don’t confuse with y
declared in main)

int main () {

double y = 2.0;

std: :cout << sqrtb83(y) << std::endl;
std::cout << y << std::endl;

NORTHWEST INSTITUTE for ADVANCED COMPUTING return O;

AMATH 483/583 High-Performancq }
University of Washingto

23

#include <rostream>

Before #include <cmath>

double sqrt583(double z) {
f 4iZéiut double x = 1.0;
Z for (size_t i = 0; i < 32; ++i) {
double dx = - (x*x-z) / (2.0%*x) ;
x += dx;
if (abs(dx) < 1.e-9) break;
+
Z = X;
return x;

int main () {
double y = 2.0;
std: :cout << sqrtb83(y) << std::endl;
std::cout << y << std::endl;

NORTHWEST INSTITUTE for ADVANCED COMPUTING return O;

AMATH 483/583 High-Performancq }
University of Washingto

24

#include <iostream>
After #include <cmath>

double sqrt583(double& z) {
f 4{Zéiut double x = 1.0;
1.41421 for (size_t i = 0; i < 32; ++i) {
double dx = - (x*x-z) / (2.0%x) ;
x += dx;
if (abs(dx) < 1.e-9) break;
}
zZ = X;
return x;

int main () {
double y = 2.0;
std: :cout << sqrtb83(y) << std::endl;
std::cout << y << std::endl;

NORTHWEST INSTITUTE for ADVANCED COMPUTING return O;

AMATH 483/583 High-Performancq }
University of Washingto

25

#include <iostream>
After #include <cmath>

$./a.out double sqrt583(double& z) {
1.41421
1.41421 s d < 59 sed)

(xxx-z) / (2.0%x) ;

y is passed by reference (not 1.e-9) break;
copied), so the original is changed
’// Z = X;
This variable return x;
}
Is this variable — _int main) {
dou = 2.0;

std::cout << sqrtb83(y) << std::endl;
std::cout << y << std::endl;

NORTHWEST INSTITUTE for ADVANCED COMPUTING return O;

26 AMATH 483/583 High-Performancq }
University of Washingto

Thought experiment

#include <rostream>
#include <cmath>

double sqrt583(double &z) {

This variable

double x = 1.0;

for (size_t i =
double dx =

x += dx;

Is this variable

if (abs(dx) <

1.e-9) break;

Which isn’t a variable

std::cout << sqrt583(2.0) << std::endl;

double sqrt583(double &z) {

. 1 error generated.

sqrtr2.cpp:21:16: error: no matching function for call to ’sqrt583’

sqrtr2.cpp:4:8: note: candidate function not viable: expects an l-value for

|::cout << sqrtb83(2.0) << std

| st argument

urn 0;

27

AVIATH 2837583 HIgn-Penormance o

University of Washington by e =

0; i < 32; ++i) {
(x*x-z) / (2.0%x) ;

::endl;

Thought experiment

#include <iostream>
#include <cmath>

Why would we want to
pass a reference?

“Out parameters”

Efficiency (no copy)

How can we do this?

NORTHWEST INSTITUTE for ADVANCED COMPUTING

08 AMATH 483/583 High-Performance §

University of Washington by e

double sqrt583(double &z) {
double x 1.0;

for (size_t i =
double dx
x += dx;

if (abs(dx)

0; 1 < 32; ++i) {
(x*x-z) / (2.0%x) ;

1.e-9) break;

return Xx;

}

int main (

std: :cout << sqrtb83(2.0) << std::endl;

return O;

}

!

ST

#include <tostream>

Before #include <cmath>

double sqrt583(double &z) {
double x = 1.0;

for (size_t i = 0; i < 32; ++i) {

double dx = - (x*x-z) / (2.0%x) ;
x += dx;
if (abs(dx) < 1.e-9) break;

}

Z = X;

return Xx;

}

int main () {

std: :cout << sqrtb83(2.0) << std::endl;

NORTHWEST INSTITUTE for ADVANCED COMPUTING . R (U

AMATH 483/583 High-Performance §
University of Washington by e =

29

#include <iostream>
After #include <cmath>

double sqrt583(const double &z) {
double x = 1.0;

for (size_t i = 0; i < 32; ++i) {

double dx = - (x*x-z) / (2.0%x) ;
x += dx;
if (abs(dx) < 1.e-9) break;

}

Z = X;

return x;

int main () {
std: :cout << sqrtb83(2.0) << std::endl;

NORTHWEST INSTITUTE for ADVANCED COMPUTING return O;

AMATH 483/583 High-Performancq }
University of Washingto

30

After

NORTHWEST INSTITUTE for ADVANCED COMPUTING

#include <rostream>
#include <cmath>

Promise not to change z

A referencetoa |—
constant is okay

31 AMATH 483/583 High-Performancgq

University of Washingto

double sqrtb83(const double &z) {
double x = 1.0;

for (size_t i = 0; i < 32; ++i) {

double dx = - (x*x-z) / (2.0%x) ;
x += dx;
if (abs(dx) < 1.e-9) break;

}

Z = X;

return x;

int main () {

std: :cout << sqrtb83(2.0) << std::endl;

return O;

+

Functions

F.2: A function should perform a single logical operation
F.3: Keep functions short and simple

F.16: For “in” parameters, pass cheaply-copied types by value and
others by reference to const

F.17: For “in-out” parameters, pass by reference to non-const

F.20: For “out” output values, prefer return values to output
parameters

NORTHWEST INSTITUTE for ADVANCED COMPUTING ,
P e v

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : P —— | _UNIVERSITY,
University of Washington by Andrew Lumsdaine / S D —

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

I-values and r-values

e Section 3.10 of C++ standard

* Aglvalue is an expression whose evaluation determines the expression
identity of an object, bit-field, or function. ,/ \

* A prvalueis an expression whose evaluation initializes an glvalue rvalue

object or a bit-field, or computes the value of the operand of / \ / \
an operator, as specified by the context in which it appears. lvalue xvalue prvalue

* An xvalue is a glvalue that denotes an object or bit-field
whose resources can be reused (usually because it is near the
end of its lifetime).

* An lvalue is a glvalue that is not an xvalue.

* Anrvalue is a prvalue or an xvalue

NORTHWEST INSTITUTE for ADVANCED COMPUTING ~ W
Pac'ﬁ,‘:;g‘}""“‘* /

L LABORATORY

AMATH 483/583 High-Performance Scientific Computing Spring 2019 e
University of Washington by Andrew Lumsdaine 1 S D —

UNIVERSITY of

33 WASHINGTON

I-values and r-values

« More intuitively
 Ignore glvalue, xvalue, prvalue

expression

« |value is something that can go on the VAR
left of an assignment (correctly) glvalue rvalue
— “Lives” beyond an expression ,/ \ ,/ \

lvalue xvalue prvalue

« Rvalue is something that can go on the
right of an assignment (correctly)
— Does not “live” beyond an expression

NORTHWEST INSTITUTE for ADVANCED COMPUTING
P e v

AMATH 483/583 High-Performance Scientific Computing Spring 2019 PN —
University of Washington by Andrew Lumsdaine S D —

IIIIIIIIIII

I-values and r-values

double x, v,

~e

~e

0
|

/ \

X
X

Zy

lvalue rvalue

double x, v,

X X
+ o
<
Ef.

N
|
!

% c++ sl7.cpp

c++ sl7.
sl7.cpp:
X + z

1 error

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

cpp

expression

/N

glvalue rvalue

/NN

lvalue xvalue prvalue

7:9: error: expression is not assignable

=y;

~

generated.

Pacific Northwest
NATIONAL LABORATOR

W

UNIVERSITY of
nensy WASHINGTON

Y

Reusing functions

#include <iostream>
#include <cmath>

double sqrt583(double z) {
double x = 1.0;

for (size_t i = 0; i < 32; ++i) {

$ c++ main.cpp

$./a.out
1.4142 Compile main.cpp
Z
Translate it into a
—— language the cpu can run

$ c++ main.cpp

|

double dx = - (x*x-z) / (2.0%x) ;
x += dx;
if (abs(dx) < 1.e-9) break;

+

return x;

}

rd

The executable (program

that the cpu can run)

int main () {

r g

$./a.out

std::cout << sqrtb83(2.0) << std::endl;

return O;
+

ance Scientific Computing Spring 2019

University of Washington by Andrew Lumsdaine

W

UNIVERSITY of
WASHINGTON

Pacific Northwest
NATIONAI \TO

Reusing in other programs

Put this function in its own file

4/”’////’

amath583.c
#include <cmath> / PP

double sqrt583(double& z) {

BORATORY

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

double x = 1.0; Many programs (mains) can call it
for (size_t i = 0; i < 32; ++i) {
double dx = - (x*x-z) / (2.0%x) ;
x += dx;
if (abs(dx) < 1.e-9) break;
}
return x; #include <iostream> #include <iostream> #include <iostream>
} #using mamespace std; #using mamespace std; #using mamespace std;
int main () { int main () { int main () {
cout << sqrtb83(3.0) << e cout << sqrt583(3.14) < cout << sqrtb83(42.0) << endl;
return O; return O; return O;
NORTHWEST INSTI T * b

37

2 by Bamee

Reusing in other programs

Many mains can call it

sqrt3.cpp:8:11: error: use of undeclared identifier 'sqrt583'
#include <iostream> cout << sqrt583(2.0) << endl;
#using mamespace std; sqrt3.cpp:9:11: error: use of undeclared identifier 'sqrt583*
int main () { cout << sqrt583(3.8) << endl;
2 errors aenerated.
cout << sqrtb83(42.0) << endl;
return 0: #include <cmath> Undeclared
} /dozblilsqrt58?(goub1e z) { \ Identifler
ouble x = 1.0;
. . for (size_t i = 0; i < 32; ++i) { ~ Di ’
Deflned In a double dx = - (x*x-z) / (2.0%x) ; Dldn twe deC|are
. . x += dx; 1 ?
different file if (abs(dx) < 1.e-9) break; \ 't here:
}

NORTHWEST INSTITUTE fo [This is definition g7V,
. :
. 2 st

OTvers. ty orvvas g[U Dy AW Cursoane

Reusing functions ,
$ c++ main.cpp
Doesn’t know how to $./a.out
translate this 1.4142 Compile main.cpp
\ —<
#include \<tostream> / Translate it into a
#using namespace std; ////Ianguagethe(xn1canrun
int main O\ { $ c++ main.cpp _J

The executable (program

cout << sqrtb83(42.0) << endl;
-1 that the cpu can run)

r g

return O; $./a.out

+

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 ’ S e UNIVERSITY of
. . . N for the of Enecgy WASHINGTON
University of Washington by Andrew Lumsdaine |

Reusing functions across programs

Declare sqrt583 is a

Z

function that exists N\d&“ost”‘eaw/

Takes a double

double sqrt583(double) ;

Returns a double

Now we know
how to call it

nt main () { ///////

std::cout << sqrt583(42.0)

return O;

¥

<< std::endl;

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019

University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

Reusing in other programs

#include <iostream> Many mains can call sqrt583

double sqrt583(double);

Undefined symbol

int main () {

std::cout << sqrt583(42.0) << sxd: :{
Linker command failed

return O; !

} Undefined symbols for archjfecture x86_64:
"sqrt583(double const&)", referenced from:
_main in sqrt3-

1d: symbol(s) not fgund for architecture x86_64
clang: error: linker command failed with exit code 1 (use -v to see invocation)

e ol e o o o o |

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 | S . O UNIVERSITY of
. . . : for the LLS. rapartment of Energy WASHINGTON
University of Washington by Andrew Lumsdaine |

Reusing functions

$ c++ main.cpp

$./a.out
1.4142 P Compile main.cpp
#include <iostream>
Translate it into a
double sqrt583(double);
B b L < language the cpu can run
int main () { $ c++ main.cpp -J
std::cout << sqrt583(42.0) << std::endl; The executable (program
that the cpu can run
return O; < P)
} $./a.out

Needs to find sqrt583
somewhere

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 ‘ i (UNIVERSITY of
University of Washington by Andrew Lumsdaine / iaie L

Reusing in other programs

#include <iostream>

Compile main.cpp with
sqrt583.cpp

double sqrt583(double);

int main () {

std::cout << sqrt583(42.0) << std::endl; Translate it into a
S Ianguage the cpu can run
’ $ c++ main.cpp sqrt583 Cpp I

#include <cmath>

The executable (program
double sqrt583(double z) {
double x = 1.0; -1 that the cpu can run)

for (size_t i = 0; i < 32; ++i) { -
double dx = - (x*x-z) / (2.0%x) ; $. /aoOU-t
x += dx;
if (abs(dx) < 1.e-9) break;

+

return Xx;

}

NORTHWEST INSTITUTE for ADVANCED COMPUTING
UNIVERSITY of

AMATH 483/583 High-Performance Scientific Computing Spring 2019 / e O SR
University of Washington by Andrew Lumsdaine / S D —

Reusing in other programs

#include <iostream>
double sqrt583(double);

int main () {

return O;

3

std::cout << sqrtb583(42.0) << std::endl;

Compile main.cpp by
itself

\

$ c++ main.cpp

Compile sqrt583.cpp by
itself

#include <cmath>

double sqrt583(double z) {
double x = 1.0;

L\

for (size_t i = 0; i < 32; ++i) {

}

NORTHWEST INSTITUTE for ADVANCED COMPUTING

)
.

N\

$ c++ sqrtb83.cpp

Another step here

Generate executable

double dx = - (x*x-z) / (2.0%x) ;
x += dx;
if (abs(dx) < 1.e-9) break;

}

return Xx;

$./a.out

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

Reusing in other programs

#include <iostream>

L | need to declare it

double sqrt583(double); |
int main () {

std::cout << sqrt583(42.0) << std:.:endi+ |f | am g0|ng to Ca” th'S

return O;
}

But a real program uses

#include <iostream> many funCtionS

double sqrt583(double);
int main () {

std::cout << sqrtb83(42.0) << std::endl;
std::cout << exptb83(42.0. pi) << std::endl;
std::cout << sinb83(42.0 * pi) << std::endl;
/)

return O;
i 45

ance Scientific Computing Spring 2019 ,"‘ - . UNIVERSITY of
. ; / Pl By WASHINGTON
ington by Andrew Lumsdaine

Reusing in other programs

And | could declare each

of them individually
double sqrt583(double); |

double expt583(double, double);
double sin583(double, double); —— But why?
/) |

But a real program uses

many functions
|

But if not, how are these

declarations found?
|

#include <iostream>

int main () {

std::cout << sqrtb83(42.0) <<-stq::
std::cout << exptb83(42.0. pi) << 3
std::cout << sinb83(42.0 * pi) << std::e
/S

return O; . .
} Hint: iostream

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 ’ St e UNIVERSITY of
. . . N for thee 1L ¥ Enecgy WASHINGTON
University of Washington by Andrew Lumsdaine |

Header files: Interface declarations

ARSUTUE SPOBURELT Include // amathb583.hpp: Declarations
#include " th583. hpp " e
rernae e rr amath583 hpp double sqrt583(double);
e e () 40 : double expt583(double, double);
ouble sin583(double, double);
std::cout << sqrt583(42.0) << std::endl; /.
std::cout << expt583(42.0. pi) << std::endl;
std::cout << sinb83(42.0 * pi) << std::endl; /
/.

Declare all functions in

return 0; $ c++ main.cpp

) amath583.hpp

#include <cmath> I I

#include "amath583.hpp" _ Include $ c++ sqrt583.cpp
double sqrt583(double z) {
double x = 1.0; amath583hpp
for (size_t i = 0; i < 32; ++i) {
double dx = - (x*x-z) / (2.0%x) ;
x += dx; 1
o) < 1.0y b | Implement all functions
¥ in amath583.cpp
return X;
}
// ct h-Performance Scientific Computing Spring 2019 ","‘ = . UNIVERSITY of

47 WASHINGTON

of Washington by Andrew Lumsdaine

Review

« What is the difference between a function declaration and a function
definition?

« Which do you need in order to be able to call a function from your
code?

 Where do function declarations usually go?

 Where do function definitions usually go?

NORTHWEST INSTITUTE for ADVANCED COMPUTING
P e v

AMATH 483/583 High-Performance Scientific Computing Spring 2019 PN — [_UNIVERSITYo
University of Washington by Andrew Lumsdaine el b

Program (file) organization (in pictures)

amath583.hpp

// amath583.hpp: Declarations
double sqrt583(double);

double expt583(double, double);
double sin583(double, double);
VA

amath583.cpp

C++ main.cpp amath583.cpp

compiler

#include <tostream>
#include "amathb583.hpp"

int main () {

/Y

return O;
}

std::cout << sqrt583(42.0) << std::endl;
std::cout << expt583(42.0. pi) << std::endl;
std::cout << sinb83(42.0 * pi) << std::

#include <cmath>

double x = 1.0;

for (size_t i =
double dx = -
x += dx;

endl; if (abs(dx) <

}

return x;

49

#include "amath583.hpp"

double sqrt583(double z) {

0; i < 32; ++i) {
(xxx-z) / (2.0%x)

1.e-9) break;

>

W

UNIVERSITY of
WASHINGTON

Pacific Northwest
N, L L

Refined program organization (in pictures)
Object file

// amath583.hpp: Declarations
double sqrt583(double);

double expt583(double, double);
double sin583(double, double);
/AT

amath583.hpp compiler amath583.0 s

amath583.cpp
compiler

main.cpp

#include <tostream> #include <cmath>
#include "amath583.hpp" #include "amath583.hpp"

compiler S

double sqrt583(double z) {
double x = 1.0;
for (size_t i = 0; i < 32; ++i) {
double dx = - (x*x-z) / (2.0%x) ;
x += dx;
if (abs(dx) < 1.e-9) break;

int main () {

std::cout << sqrt583(42.0) << std::endl;

std::cout << expt583(42.0. pi) << std::endl;
std::cout << sinb83(42.0 * pi) << std::endl;
/). 3

return Xx;
return O; }
¥ /o
50 AMA

University of Washington by Andrew Lumsdaine

Multifile Multistage Compilation

Compile main.cpp to
main.o object file

Tell the compiler to
generate object

/

$ c++ -c main.cpp -o main.o

Tell the compiler

name of the object

$ c++ -c amath583.cpp -0 amath583.0

$ c++ main.o amathb583.0 -o main.exe

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performa

Pacific Northwest
NATIONAL LABORATORY

nce Scientific Computing Spring 2019 ‘ [——
University of Washington by Andrew Lumsdaine e

IIIIIIIIIII

Multistage compilation (pictorially)

$ c++ -c main.cpp -o main.o

$ c++ -c main.cpp -o main.o

Mmain.exe

$ c++ main.o amath583.0 -0 main.exe

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019

UNIVERSITY of
. . . : WASHINGTON
University of Washington by Andrew Lumsdaine

Recompiling

If this changes

\

If this changes

Need to
compile again

——

Or if this
changes

Need to
compile again

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Mmain.exe

UNIVERSITY of
WASHINGTON

Dependencies

* main.o depends on main.cpp and amath583.hpp
« amath583.0 depends on amath583.cpp
* main.exe depends on amath583.0 and main.o

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performa
University of Washington by Andrew Lumsdaine

] ORY
P e . . y - 4 UNIVERSITY o
nce Scientific Computing Spring 2019 / Py . WASHINGTON

Automating: The Rules

 If main.o is newer than main.exe
« If amath583.0 is newer than main.]
 If main.cpp is newer than main.o :
 If amath583.cpp is newer than am
 If amath583.hpp is newer than ma

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performan
University of Washington by Andrew Lumsdaine

Scientific C ing Spring 2019 / e o | uNiversiTY
ce Scientific Computing Spring . TP, /

Make

 Tool for automating compilation (or any other rule-driven tasks)
* Rules are specified in a makefile (usually named “Makefile”)

* Rules include main.exe: main.o amath583.0
_ Dependency c++ main.o amath583.0 -o W Dependencies
— Target main.o: main.cpp amathb583.hpp
— Consequent ct++ -c main.cpp -0 main.o —_—

Consequent

amathb83.0: amathb83.cpp
c++ -c amathb83.cpp -o amathb83.o0

Target

NORTHWEST INSTITUTE for ADVANCED COMPUTING
P e v

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : g ' _UNIVERSITYo f
University of Washington by Andrew Lumsdaine ! Sl b

Make

Tool for automating compilation (or any other rule-driven tasks)
Rules are specified in a makefile (usually named “Makefile™)
Rules include

$ make
— Dependency c++ -c main.cpp -o main.o
— Target c++ -c amath583.cpp -o amath583.0
— Consequent c++ main.o amathb583.0 -0 main.exe

Edit amath583.hpp $ make

ct++ —-C main.cpp -0 main.o
c++ main.o amathb583.0 -0 main.exe

NORTHWEST INSTITUTE for ADVANCED COMPUTING
P e v

AMATH 483/583 High-Performance Scientific Computing Spring 2019 e [_UNIVERSITY, f
University of Washington by Andrew Lumsdaine st T VASELNGION

Computational Science Find P that
P _— | satisfies this

V-P = f, in

[P-No] = [t] on Sy
Differential Eqns P-No = t on 88%0 (too hard)

Find x that
satisfies this

/ (too hard)

discretize

Find x that
satisfies this

linearize

NORTHWEST INSTITUTE for ADVANCED COMPUTING

f NATIONAL RATORY - [
AMATH 483/583 High-Performance Scientific Computing Spring 2019 / oo [_uNivERsITY, ”
University of Washington by Andrew Lumsdaine | (R o of Koy |

Computational Science

The fundamental computation at the core of many (most/all)
computational science programs is solving Az = b

Assume ,b € RY and A € RNVXN

|.e., x and b are vectors with N real elements and A is a matrix with
N by N real elements

Solution process only requires basic arithmetic operations

NORTHWEST INSTITUTE for ADVANCED COMPUTING o ~ A/
| Pacific Northwest -

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY o

[f
59 e TS gt of Enirgy WASHINGTON

Neural Network

\'lll/).

—\\
O N
XSS
XX S A RS

NSO AN
NS 7\ 7}
N

N/
N7

X XHELL RS
. v‘}:e’:":lcl;ﬁ ﬁ\{\\}\"\’,{""'A
SO\, A, N7V g,
A Y X7 7N
(REBAIAY KR IS RIREIIKEN
NEEEREEIAN AZSEHK XS ESA LEEIRSEST
PRI PELZASEISN BB
l///\\\" Vo /;/\(\ S .'/)/\\\‘
PSRN LA 2SN

e
N <X 7
Y 8 2

NORTHWEST INSTITUTE for ADVANCED COMPUTING ~ W
Pacific Rorthwest -

iah- ientifi i i 8 | UNIVERSITY o f
60 AMATH 483/5.83 H.|gh Performance Scientific Computmg Spring 2019 1 Pty Opeiet by e S
University of Washington by Andrew Lumsdaine J

Zoom In On One ”Neuron’

Sigmoid functen

w /
5130 0 xo
w
X1)
; hehald
wy/ ‘
'CEN—l

NORTHWEST INSTITUTE for ADVANCED COMPUTING

W

UNIVERSITY of
WASHINGTON

Pacific Northwest
NATIONA RATO

RY

AMATH 483/583 High-Performance Scientific Computing Spring 2019

o1 University of Washington by Andrew Lumsdaine

Zoom In On One ”Neuron’

ry = o(t)
Wy /
Z(X t = woTo +wiTy + -+ W, T,
1 w N-1
w -1 ’L:O
N

N-1
Ty = O'(Z W;T;)
i=0

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : T_ i i UNIVERSITY of
. . . : P Wy WASHINGTON
University of Washington by Andrew Lumsdaine

Zoom In On Two “Neurons”

w /
5130 0 xo
w
L1
Wy 4
xN—l

NORTHWEST INSTITUTE for ADVANCED COMPUTING

. = - J e

i - i ifi i i UNIVERSITY of

AMATH 483/5.83 ngh Performance Scientific Computmg Spring 2019 : ; e S
University of Washington by Andrew Lumsdaine)

Zoom In On Two “Neurons”

NORTHWEST INSTITUTE for ADVANCED COMPUTING

P RY | o
AMATH 483/583 High-Performance Scientific Computing Spring 2019 o L UNIVERSITY of
University of Washington by Andrew Lumsdaine ! g - WASHINGEON

Zoom In On Two “Neurons”

NORTHWEST INSTITUTE for ADVANCED COMPUTING

W

UNIVERSITY of
WASHINGTON

AMATH 483/583 High-Performance Scientific Computing Spring 2019

69 University of Washington by Andrew Lumsdaine

Zoom In On Two “Neurons”

K
O

|
2
S
I~
ﬁ

NORTHWEST INSTITUTE for ADVANCED COMPUTING

W

UNIVERSITY of
WASHINGTON

AMATH 483/583 High-Performance Scientific Computing Spring 2019

66 University of Washington by Andrew Lumsdaine

Zoom In On Two “Neurons” - (
(

vt = S(Wz°)

[

vector matrix vector

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 ‘ S o | _UNIVERSITY o
University of Washington by Andrew Lumsdaine / s e

Mathematical Vector Space

Definition. (Halmos) A vector space is a set V' of elements called vectors satisfying the following axioms:

1. To every pair x and y of vectors in V' there corresponds a vector x + y called the sum of x and y in
such a way that ’

‘ iativ '
commutative associative We need to be able to
addition is commutative, r + y =y + x

(a)
(b)
(c)

)

(d) to every vector x in V there corresponds a unique vector —x such that| x + (—x) =0

add 2 vectors = vector

addition is associative, x + (y + 2z) = (x + y) + 2

there exists in V' a unique vector 0 (called the origin) such that x + 0 = z for ever vector x, and

2. To every pair a and x where a is a scalar and z is a vector in V', there corilesponds a vector ax in V
called the product of a and = in such a way that '

Identity over +

(a) multiplication by scalars is associative a(bx) = (ab)z, and

|
_ . ~— . .
(b) 1z = x for every vector x. — Identity over x associative L distributive
3. (a) Multiplications by scalar is distributive with respect to vector addition. a(z + yJ # ax + ay

b) multiplication by vetors is distributive with respect to scalar addition (a +b)x = ax + b
NORTHWEST INSTITUTE for ADVANCED COMPUTING _ , W

R . - . . UNIVERSITY of
AMATH 483/583 High-Performance Scientific Computing Spring 2019 WASHINGTON

68 University of Washington by Andrew Lumsdaine

Mathematical Vector Space Examples

Definition. (Halmos) A vector space is a set V' of elements called vectors satisfying the following axioms:

1. To every pair z and y of vectors in V' there corresponds a vector x + y called the sum of z and y in
such a way that
(a) addition is commutative, z +y =y + x
(b) addition is associative, z + (y + 2) = (z + y) + z
(c) there exists in V' a unique vector 0 (called the origin) such that = + 0 = z for ever vector z, and
(d) to every vector x in V there corresponds a unique vector —z such that @ + (—z) =0

2. To every pair a and x where a is a scalar and « is a vector in V, there corresponds a vector ax in V'
called the product of a and x in such a way that

a) multiplication by scalars is associative a(bz) = (ab)z, and

(

(b) 1z = x for every vector x. The Vector S ace
3. (a) Multiplications by scalar is distributive with respect to vector addition. a(z + y) = ax + ay p
(

b) multiplication by vetors is distributive with respect to scalar addition (a + b)z = az + by u S e d i n SC i e ntifi C

« Set of all complex numbers computing
« Set of all polynomials

« Set of all n-tuples of real numbers RN

NORTHWEST INSTITUTE for ADVANCED COMPUTING o YA/
Pacific Northwest / s
) NATIONAL LABORATORY J
AMATH 483/583 High-Performance Scientific Computing Spring 2019 : 3 #X;‘;{Fmg]’{(;&
University of Washington by Andrew Lumsdaine ! e s

69

Computer Representation of Vector Space

Definition. (Halmos) A vector space is a set V' of elements called vectors satisfying the following axioms:

1. To every pair x and y of vectors in V' there corresponds a vector x + y called the sum of x and y in
such a way that ’

‘ iativ '
commutative associative We need to be able to
addition is commutative, r + y =y + x

(a)
(b)
(c)

)

(d) to every vector x in V there corresponds a unique vector —x such that| x + (—x) =0

add 2 vectors = vector

addition is associative, x + (y + 2z) = (x + y) + 2

there exists in V' a unique vector 0 (called the origin) such that x + 0 = z for ever vector x, and

2. To every pair a and x where a is a scalar and z is a vector in V', there corilesponds a vector ax in V
called the product of a and = in such a way that '

Identity over +

(a) multiplication by scalars is associative a(bx) = (ab)z, and

TP L

distributive
3. (a) Multiplications by scalar is distributive with respect to vector addition. a(z Ty

(b) 1z = x for every vector x. — Identity over X — associative

b) multiplication by vetors is distributive with respect to scalar addition (a +b)x = ax + b
NORTHWEST INSTITUTE for ADVANCED COMPUTING _ , W

R . - . . UNIVERSITY of
AMATH 483/583 High-Performance Scientific Computing Spring 2019 WASHINGTON

70 University of Washington by Andrew Lumsdaine

Computer Representation of Vector Space

In the bad old days, vectors represented as arrays

REAL X(N)
REAL Y(N)
« Add them CALL SAXPY(N, ALPHA, X, Y) Y «— aX +Y
« Double precision N | N
DOUBLE X (1) TV\]:O dll‘ferent For sa;ne
DOUBLE Y(N) unctions operation
//// e
« Add them CALL DAXPY(N, ALPHA, X, V) Y <~ aX +Y
for (int i = 0; int < N; ++i) y[i] += alpha * x[i];
\

For same

NORTHWEST INSTITUTE for ADVANCED COMPUTING
» AMATH 483/583 High-Performance Scien] | T [0 I ementation e ‘ ”"‘g”'l",i”.{ of
e /

University of Washington by Antrew=r

Vectors Spaces in C++

« Despite the clumsiness of Fortran interface (or maybe because of it)
the performance of vector operations was quite good

* In C/C++, there are numerous options for vectors (and matrices)

Not dynamically
sizable*

double x[N]; —

Memory

double *x = malloc (N x sizeof (double));—
management hell

vector<double> x(N); ___ | Limited to interface of

vector<double> (not a vector)

Vector X(HLL

- Just right, or very wrong
We can define interface and implementation

NORTHWEST INSTITUTE for ADVANCED COMPUTING ~ A
Paciic povitwest -

72 AMATH 483/583 High-Performance Scientific Computing Spring 2019 UNIVERSITY o,
University of Washington by Andrew Lumsdaine

Proxly Operated by Bavese
fox the LS. Department of Enen

f
WASHINGTON

Vectors Spaces in C++

« Despite the clumsiness of Fortran interface (or maybe because of it)

the performance of vector operations was quite good

* In C/C++, there are numerous options for vectors (and matrices)

double A[M] [N]5—

Not dynamically
sizable*

P

double *xxA = _?7;

Memory management
hell squared

vector<vector<double> > x (N);

Matrix A (M, N)|;

Really easy to get bad
performance

—_| Not a matrix (or a 2D array for

that matter) at all

Just right, or very wrong
We can define interface and implementation

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performa

nce Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Classes

 First principles: Abstraction, simplicity, consistent specification
« Domain: Scientific computing

« Domain abstractions: Matrices and vectors

 Programming abstractions: Matrix and Vector

« C++ classes enable encapsulation of related data and functions

 Provides visible interface
« Hides implementation

NORTHWEST INSTITUTE for ADVANCED COMPUTING ~ W
Pacific Northwest | -

AMATH 483/583 High-Performance Scientific Computing Spring 2019 »,x_mw,,h.,:.e
University of Washington by Andrew Lumsdaine v b

UNIVERSITY o

of
74 WASHINGTON

std::vector<double>

Before rushing off to implement fancy interfaces
Understand what we are working with

And how hardware and software interact
std::vector<double> will be our storage

But its interface won’t be our interface HERVIARE
— We will gradually build up to complete Vector &

— And complete Matrix

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 sl o[umiversiTy
University of Washington by Andrew Lumsdaine / e =

The Standard Template Library

 In early-mid 90s Stepanov, Musser, Lee applied |
principles of generic programming to C++

) ALEXANDER STEPANOV ¢

« Leveraged templates / parametric polymorphism
std: :set std::for_each
std::1list ForwardIterator std::sort
Elements of
std: :map Reverselterator std::accumulate Programming
std: :vector RandomAccesslterator std::min_element J——
Alexander Stepanov and Paul McJones.

2009. Elements of Programming (1st
ed.). Addison-Wesley Professional.

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 S e UNIVERSITY o o
. . . N | for thee L1 ¥ Enesgy WASHINGTON
University of Washington by Andrew Lumsdaine |

Generic Programming

« Algorithms are generic (parametrically polymorphic)

« Algorithms can be used on any type that meets algorithmic reqts
— Valid expressions, associated types

— Not just std. ::types

S

Standard Library container

vector<double> arrary(N);

std::accumulate (array.begin(), array.end(), 0.0);

/

iterator

\

\\\\\\\\\\

iterator

Initial value

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performa

University of Washington by Andrew Lumsdaine

nce Scientific Computing Spring 2019

std Containers

 Note that all containers

have same interface
 (Actually a hierarchy,

we’ll come back to this)

« We will primarily be
focusing on vector

NORTHWEST INSTITUTE for ADVANCED

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

78

Headers <vector> <deque> <list>
Members vector deque list
constructor |vector deque list
operator= operator= operator= operator=
terators begin begin begin begin
end end end end
Size size size size
capacity max_size max_size max_size max_size
empty empty empty empty
resize resize resize resize
front front front front
T bk ek bk bk
operator(] operator|] operator(]
insert insert insert insert
erase €rase €rase €rase
modifiers push_back |push back |[push back |push back
pop_back pop back pop back pop back
swap swa

UNIVERSITY of
WASHINGTON

http://www.cplusplus.com/%3cvector%3e
http://www.cplusplus.com/%3cdeque%3e
http://www.cplusplus.com/%3clist%3e
http://www.cplusplus.com/vector
http://www.cplusplus.com/deque
http://www.cplusplus.com/list
http://www.cplusplus.com/vector::vector
http://www.cplusplus.com/deque::deque
http://www.cplusplus.com/list::list
http://www.cplusplus.com/vector::operator=
http://www.cplusplus.com/deque::operator=
http://www.cplusplus.com/list::operator=
http://www.cplusplus.com/vector::begin
http://www.cplusplus.com/deque::begin
http://www.cplusplus.com/list::begin
http://www.cplusplus.com/vector::end
http://www.cplusplus.com/deque::end
http://www.cplusplus.com/list::end
http://www.cplusplus.com/vector::size
http://www.cplusplus.com/deque::size
http://www.cplusplus.com/list::size
http://www.cplusplus.com/vector::max_size
http://www.cplusplus.com/deque::max_size
http://www.cplusplus.com/list::max_size
http://www.cplusplus.com/vector::empty
http://www.cplusplus.com/deque::empty
http://www.cplusplus.com/list::empty
http://www.cplusplus.com/vector::resize
http://www.cplusplus.com/deque::resize
http://www.cplusplus.com/list::resize
http://www.cplusplus.com/vector::front
http://www.cplusplus.com/deque::front
http://www.cplusplus.com/list::front
http://www.cplusplus.com/vector::back
http://www.cplusplus.com/deque::back
http://www.cplusplus.com/list::back
http://www.cplusplus.com/vector::operator%5b%5d
http://www.cplusplus.com/deque::operator%5b%5d
http://www.cplusplus.com/vector::insert
http://www.cplusplus.com/deque::insert
http://www.cplusplus.com/list::insert
http://www.cplusplus.com/vector::erase
http://www.cplusplus.com/deque::erase
http://www.cplusplus.com/list::erase
http://www.cplusplus.com/vector::push_back
http://www.cplusplus.com/deque::push_back
http://www.cplusplus.com/list::push_back
http://www.cplusplus.com/vector::pop_back
http://www.cplusplus.com/deque::pop_back
http://www.cplusplus.com/list::pop_back
http://www.cplusplus.com/vector::swap
http://www.cplusplus.com/deque::swap
http://www.cplusplus.com/list::swap

std Containers

* std containers “contain” elements

| vector of doubles
vector<doubl rray (N) ;

/ vector of ints
vector<int> array (N);

| listof vectors of complex doubles

list<vector<complex<double> > > thing;

* Implementation of list, vector, complex is the same regardless of what
IS being contained

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : = e éRY | _UNIVERSITY,
University of Washington by Andrew Lumsdaine sl e e

Generic Programming

« Algorithms are generic (parametrically polymorphic)

« Algorithms can be used on any type that meets algorithmic reqts
— Valid expressions, associated types
— Not just std. ::types

— Standard Library container

list<vector<complex<double> > > thing(N);

std::accumulate(ti}pg.begin(), thing.end(Lk\g;Eii\

iterator iterator Initial value

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 ‘ nlly Operted by AT‘.)RY | UNIVERSITYo
University of Washington by Andrew Lumsdaine / g -

std Containers

« The std containers are class templates (not “template classes”)

template <typename T> class vector;
template <typename T> class dequeue;
template <typename T> class 1list;

| [T~

_ The template
What follows is P _ A class
a template parameter s a template
type placeholder
 Don’t need details for now vector<double>

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : LM,,,MR . ' _UNIVERSITYo f
University of Washington by Andrew Lumsdaine ! Sl b

Our goal

« Extract maximal performance from one core, multiple cores, multiple
machines for computational (and data) science

« Two algorithms: matrix-matrix product, (sparse) matrix-vector product

A, B,C € RN*N C=AxB C%j:=jzjfhkf%j
: HARWARE

Matrix A(M,N);

for (int i = 0; i < AN; A+i)

for (int j = 0; j <AN; ++j)
What does for (int k = 0; k < N; ++k)
the hard- —— ¢(i,j) += A(i,k) * B(k,j) SOFTWARE

ware do?
NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

IIIIIIIIIII

Classes

 First principles: Abstraction, simplicity, consistent specification
« Domain: Scientific computing

« Domain abstractions: Matrices and vectors

 Programming abstractions: Matrix and Vector

« C++ classes enable encapsulation of related data and functions

 Provides visible interface
« Hides implementation

NORTHWEST INSTITUTE for ADVANCED COMPUTING ~ W
Pacific Northwest | -

AMATH 483/583 High-Performance Scientific Computing Spring 2019 »,x_mw,,h.,:.e
University of Washington by Andrew Lumsdaine v b

UNIVERSITY o

of
83 WASHINGTON

Vector desiderata

- Mathematically we say let v & RY
 There are N real number elements
» Accessed with subscript

* (Vectors can be scaled, added)

* Programming abstraction
» Create a Vector with N elements
* Access elements with “subscript”

NORTHWEST INSTITUTE for ADVANCED COMPUTING i ~ A
Paciic porttest | -

AMATH 483/583 High-Performance Scientific Computing Spring 2019 e
University of Washington by Andrew Lumsdaine] g -

UNIVERSITY o

of
84 WASHINGTON

Using Vector class

int main() {
size_t num_rows = 1024;

Vector v1(num_rows);

for (size_t i = 0; i < vi.num_rows(); ++i) {
vi(i) = 1i;

¥

return O;

NORTHWEST INSTITUTE for ADVANCED COMPUTING

) NATIONAL RATORY ““ %
AMATH 483/583 High-Performance Scientific Computing Spring 2019 S 3 UNIVERSITY of
. . . . for the US. T 1t of Enengy WASHINGTON
University of Washington by Andrew Lumsdaine)

Using Vector class
Declare (construct) a Vector

int main() { with num_rows elements
size_t num_rows = 1024;

Vector v1(num_rows); Get its size

—

for (size_t i = 0; i < vl.num_rows(); ++i) {
vi(i) = 1i;

——

¥ Index each element

Vector v2 (v1);
Vector v3 = vi;
v3 = v2;

Copy (assign) in various ways

return O;

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : T_ i i UNIVERSITY of
. . . : P Wy WASHINGTON
University of Washington by Andrew Lumsdaine

Using Vector class

int main() {
size_t num_rows = 1024;

Declare (construct) a Vector
with num_rows elements

Get its size

Vector v1(num_rows) ; ””””’fffff

for\(size_t i = 0; i < vil.num rowsO—+—+riy <

Index each element

vi\(i) = 1i;

by

Copy (assign) in various ways

VectoY v2 (v1);

Vecton v3 = vi;

3 = vb; Interface vs

}

Implementation
return V;

Know nothing about what a

w Vector is — only how to use it

er University of Washington by Andrew Lumsdaine

Anatomy of a C++ class Declares an Hides
P interface implementation

class Vector {
public:
Vector(size_t M) : num_rows_(M), storage_(num_rows_) {}

double& operator() (size_t i) { return storage_[i]; }
size_t num_rows() const { return num_rows_; }
private:

size_t num_rows_;
std: :vector<double> storage_;

};

NORTHWEST INSTITUTE for ADVANCED COMPUTING

o T AT ! 27
igh- ientifi i i ERSITY o
AMATH 483/5.83 ngh Performance Scientific Computmg Spring 2019 : Pty Ot e UANg\lI‘{INIGT'IY'O{\I
University of Washington by Andrew Lumsdaine)

Anatomy of a C++elace _ _
— Define a new class —= A class is a “recipe” K

class Vectar { ... | for objects
public: Name of the class
Vector(size_t M) : num_rows_(M), storage_(num_rows_) k}

double& operator() (size_t i) { retury storage_[il; }

size_t num_rows() const { return nuh_rows_; }

. . A class is a user-
private: _
size t e defined type
std: :vector<double> storage_; ‘/
I Objects are variables

And hides | Interface specifies of that type

implementation how to use objects A 7]

igh-| ientifi i i g UNIVERSITY of
89 AMATH 483/5.83 ngh Performance Scientific Computmg Spring 2019 / Pty Ot e S
University of Washington by Andrew Lumsdaine]

Anatomy of a C++ class

Create a Vector with

class Vector { n elements (M)
public:

Vector(size_t M) : num_rows_(M), storage_(num_rows_) {}

double& operator() (size_t i) { return storage_[il; }

size_t num_rows() const { retu num_rows_; J*

private:
size_t num_rows_;

Access elements
with a subscript

std: :vector<double> storage_;

};

NORTHWEST INSTITUTE for ADVANCED COMPUTING

90 University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019

W

UNIVERSITY of
WASHINGTON

Anatomy of a C++ class
Constructor (function

class Vector { ' that makes new object)
public:
Vector(size_t M) : num_rows_(M), storage_(num_rows_) {}

doubl;;\zférator()(size_t i) { return storage_[il; }

size_t num_r%ws() const { return num_rows_; }

size t num_rows_; | constructor is the same
std: :vector<(#1ouble> storage_; as the name of the class

};

This constructor function

m takes one argument
o cientific Computing Spring 2019 ‘ NA:A::?; :‘Y UNIVERSITY .

University of Washington by Andrew Lumsdaine

Anatomy of a C++ class

class Vector {
public: —

Everything following

the public: declaration
is public

double& op
size t num_rows() c

private:
size_t num_rows_;
std: :vector<double> storage_;

};

Vector(size_t M) : num_rows_(M), storage_(num_rows_) {}
tor() (size_t i) { return storage_[il; }

t { return num_rows_; }

Code outside of the object
can access public members
(functions or data)

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

Anatomy of a C++ class

Three public member

class Vector { functions

public:
Vector(size_t M) : num_rows_(M), storage_(num_rows_\ {}

double& operator() (size_t i) { return s e_[il; }
size_t num_rows() const { retur _rows_; 1} Constructor
private: Subscript
size_t num_rows_;
std: :vector<double> storage_; “size”
s

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 ‘ e e ‘ UNIVERSITY of
. . . N for thee L1 f Energy WASHINGTON
University of Washington by Andrew Lumsdaine

Anatomy of a C++ class

Everything following

class Vector {
public:
Vector(size t M) : num_row

double& operator () (

size_ t num_r

private:

M), storage_(num_rows_) {}
e_t i) { return storage_[i]; }

() const { return num_rows_; }

| the private: declaration
IS private

size_t num_rows_;
std: :vector<double> storage_;

};

Code outside of the object
can not access private
members (functions or data)

But member

Prolly Operaied by Basese UNIVERSITY of
o e 115, Bopertmont of Evarey WASHINGTON

Pacific Northwest / W_
/ NATIONAL LABORATORY J

Anatomy of a C++ class

public:

private:
size_t

Y

Vector(size t M)

class Vector {

double& operator() (size_t i) { return storage_[il; }

size_t num_rows() const { return num_rows_; }

And to

: num_rows_(M), storage_(num_rows_) {}

what?

num_rows_; —

std: :vector<double> storage_;

N~

Store the size of
the Vector

/

And when? How do we set these to |
! ' the right size, right value? #____

Store the n elements of the
Vector as a
std::vector<double>

UNIVERDIL T 0F
WASHINGTON

Anatomy of a C++ class

class Vector {
public:
Vector(size_t M) : num_rows_(M), storage_(num_rows_) {}

double& operator() (size_t i) { return storage_[il; }

size_t num_rows() const { return num_rows_; }

private: Store the number
size_t num_rows_; — | of elements

std: :vector<double> storage_;

+; Store the n elements of the
Vector as a

std::vector<double>

Proxly Operated by Bavese
fox the LS. Department of Enen

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Sprng
University of Washington by Andrew Lumsdaine

UNIVEIRDILT 0f
WASHINGTON

Using Vector class

int main() {
size_t num_rows = 1024;

Declare (construct) a Vector
with num_rows elements

Vector v1(num_rows);

for (size_t i = 0; i < vi.num_rows(); ++i) {
vi(i) = 1i;

+

Vector v2 (v1);

Vector v3 = vi;

v3 = v2;

return O;

NORTHWEST INSTITUTE for ADVANCED COMPUTING

University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : e T_ j UNIVERSITY of

WASHINGTON

Anatomy of a C++ class
The number of

class Vector { elements
public:

Vector(size_t M) : num_rows_(M), storage_(num_rows_) {}

double& operator() (size_t i) { return storage_[il; }

size_t num_rows() const { return num_rows_; }

private: In the constructor we
size_t num_rows_ ,/ want to set this to M
std::vector<double> storage_;
}; And make this num_rows
elements long

NORTHWEST INSTITUTE for ADVANCED COMPUTING > / A
Pacific Nortturest, -

igh- iantifi i i g [UNIVERSITY of
AMATH 483/5.83 ngh Performance Scientific Computmg Spring 2019 : Pty Ot e S
University of Washington by Andrew Lumsdaine)

Anatomy of a C++ class
The constructor is And it has a body

class Vector { a function
public:

Vector(size_t M) : num_rows_(M), storage_(num_rows_) {}

double& operator() (size_t i) { return storage_[il; }
size_t num_rows() const { return num_rows_; }

private:
size_t num_rows_;
std: :vector<double> storage_;

};

NORTHWEST INSTITUTE for ADVANCED COMPUTING

o T AT ! 27
igh- ientifi i i ERSITY o
AMATH 483/5.83 ngh Performance Scientific Computmg Spring 2019 : Pty Ot e UANg\lI‘{INIGT'IY'O{\I
University of Washington by Andrew Lumsdaine)

One option for initialization

class Vector { Set num_rows_to M
public:
Vector(size_t M)

Construct storage_ with
num_rows_ elements

num_rows_ = M; ’7//’
storage = std::vector<double>(num_rows?);
¥

size_t num_rows() const { return num_rows_; }

private:

!};

size_t num_rows_;
std: :vector<double> storage_;

double& operator() (size_t i) { return storage_[il; }

University of Washington by Andrew Lumsdaine

W

UNIVERSITY of
WASHINGTON

Preferred initialization

class Vector {

Set num_rows_to M

public:
Vector(size t M)

private:
size_t

};

std: :vector<double> storage_;

formed before body

Object is well-

of function

num_rows_ (M), storage_(num_rows_;\§}

!

double& operator() (size_t i) { retufn storage_[il; }

size_t num_rows() const { return nym_rows_; }

num_Yrows_;

Construct storage

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

Using Vector class

int main() {
size_t num_rows = 1024;

Vector v1(num_rows);

for (size_t i = 0; i < vi.num_rows(); ++i) {
vi(i) = 1i;

}

Vector v2 (v1);

Vector v3 = vi;

v3 = v2;

return O;

Access num_rows

Call the num_rows()
member function for
object v1

NORTHWEST INSTITUTE for ADVANCED COMPUTING

102

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Baese
for the LS. Department of Enen

W

UNIVERSITY of
WASHINGTON

Member function

Just a function Function body

class Vector {
public:
Vector(size_t M)/ : num_rows_(M), storage_(num_rows_) {}

double& operafor() (size_t i) { refirn storage_[il; }

size_t num_rows (3—const { return num_rows_; }

N

private: Returns a size_t

| Takes no arguments

size_t num_rows_;
std: :vector<double> storage_;

};

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

W

UNIVERSITY of
WASHINGTON

103

Member function

class Vector {
public:
Vector(size t M)

private:
size_t

};

Interface in

Vector.h
’//,/’ PP

num_rows_(M), storage_(num_rows_) {}

size_t num_rows() const;

\

num_rows_;

std: :vector<double> storage_;

double& operator() (size_t i) { return storage_[il; }

Function declaration
(implementation

elsewhere)

_‘,//’

Implementation
in Vector.cpp

104

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

size_t Vector::num_rows() const { return num_rows_ };

- .
UNIVERSITY of
WASHINGTON

Member function

class Vector {
public:

Vector(size_t M)/;;guﬁfrows_(M), storage_(num_rows_) {}

Subscript

double& operator() (size_t i) { return storage_[il; }

size_t num_rows() const eturn num_rows_; JF
private:

size_t num_rows_; In our next

std: :vector<double> storage_; exciting episode

};

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 ‘ . ﬂ_) j #X;‘;l";g]’{(;&
University of Washington by Andrew Lumsdaine / b

C++ Core Guidelines related to classes

C.1: Organize related data into structures (structs or classes)

C.3: Represent the distinction between an interface and an
implementation using a class

C.4: Make a function a member only if it needs direct access to the
representation of a class

C.10: Prefer concrete types over class hierarchies
C.11: Make concrete types reqular

NORTHWEST INSTITUTE for ADVANCED COMPUTING \V(/ W
" B et ‘ .
http://isocpp.github.io/CppCoreGuidelines/CppCore GUuidelings o, om0 / ST WASHINGTON

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

Thank you!

NORTHWEST INSTITUTE for ADVANCED COMPUTING . \V’/ 'W'
PacifigNorthwest / A

IONAL LABORATORY

igh-| ientifi i i g UNIVERSITY of
AMATH 483/583 ngh Performance Scientific Computmg Spring 2019 - et e S
University of Washington by Andrew Lumsdaine

107

0 0,

© Andrew Lumsdaine, 2017-2018

Except where otherwise noted, this work is licensed under

https://creativecommons.org/licenses/by-nc-sa/4.0/

NORTHWEST INSTITUTE for ADVANCED COMPUTING
UNIVERSITY of

AMATH 483/583 High-Performance Scientific Computing Spring 2019 | oty O S e
University of Washington by Andrew Lumsdaine / b

Example with Input

All variables in

#include <iostream>
C++ must be typed!

#include <string>

Variable type is a
int main () { std::string

~

std::string contents;

Variable declaration

—| Variable nameiis
contents

Input Object ___ std::cin >> contents;

std::cout << contents << std::endl;

return O;

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : ™ UNIVERSITY of
. . . : or e WASHINGTON
University of Washington by Andrew Lumsdaine

Result

S c++ demo.cpp
$./a.out
Today 1s a good day for HPC!

Today

« Explain

NORTHWEST INSTITUTE for ADVANCED COMPUTING —~— A
Paciic poritwest | -

) R |
R . - . . UNIVERSITY of
AMATH 483/583 High-Performance Scientific Computing Spring 2019 Pty Opeetd by Butcte WASHINGTON

i University of Washington by Andrew Lumsdaine

Aside (Standard 1/O)

 When text is entered into bash, it is accumulated and sent to the
program after CR is entered (there are ways to change this: stty)

statccoaih std:cout
std:cerr — std:cerr

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 sl o[umiversiTy
University of Washington by Andrew Lumsdaine / e =

Example
$ wc

Word count

int main() {

Tty input (all the

(man wc) / hello world text)

std: :cout << "Hello World" << std::endl;

return O;

+

pipe

4 2

$ cat b.cpp | wc
7 —

4 12

70 —

4 lines, 12 words,
70 characters

$ we b.cpp—

4 12 70 b.cpp

—
Read contents

Pipe the text from

b.cpp into wc

from b.cpp

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance
University of Washington by Andrew Lumsdaine

Scientific Computing Spring 2019

o

Pacific Northwest
NATIONAI RATORY

IIIIIIIIIII

Explanation

 When text is entered into bash, it is accumulated and sent to the
program after CR is entered (there are ways to change this: stty)

« This entire string is put into the input stream of the program
Today 1s a good day for HPC!

 cin tokenizes the input stream Today is a good day for HPC!

int main() { Reads first token I I I I I I I
std::string contents; only: Today token| to tokerl token| toker| toker token

std::cin >> contents;
std::cout << contents << std::endl;___________

Prints contents
(first token: Today)

return 0;

}

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : ,?M,,,MR . ' _UNIVERSITYo f
University of Washington by Andrew Lumsdaine ! g -

Next Attempt

int main () { ++
std::string contents; $ ¢ demo2. Cpp
$./a.out
std::cin >> contents; .
std::cout << contents; TOday 1S a gOOd day fOI‘ HPC|
TodayisagooddayforHPC!

std::cin >> contents;
std::cout << contents;

std::cin >> contents; PY E I 1
std::cout << contents; Xp aln
std::cin >> contents;

std::cout << contents;

std::cin >> contents;
std::cout << contents;

std::cin >> contents;
std::cout << contents;

std::cin >> contents;
std::cout << contents;

std::cin >> contents;
std::cout << contents << std::endl;

return 0;

NORTHWEST INSTITUTE for ADVANCED COMPUTING . \7’/ 'W'
Pac'rﬁgNorthwest / A

IONAL LABORATORY

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : = e
University of Washington by Andrew Lumsdaine o Lo

UNIVERSITY of

115 WASHINGTON

Yet Another Attempt

#include <string>

#include <iostream> $. /a. Out
int main() | Today is a good day for HPC!
std::string contents; Today is a good day for HPC!

std::cin >> contents;
std::cout << contents << " ";

std::cin >> contents; - $. /a . Out StUCk

std::cout << contents << " ",

std::cin >> contents; TOday is a gOOd da.y fOI‘/

std::cout << contents << "_"; .
std:icin >> contents; Today is a good day for
std::cout << contents << "_"; One more

std::cin >> contents;
std::cout << contents << "_";

std::cin >> contents; - $ J /ao Out tOken
staricin 5> contentes Today is a good day for /
std::cout << contents << std::endl; Today ls a good day‘ for HPC
return O; I{I)(:

Final token

NORTHWEST INSTITUTE for ADVANCED COMPUTING ~ A
Paciic poritwest |

R . - . . UNIVERSITY of
AMATH 483/583 High-Performance Scientific Computing Spring 2019 WASHINGTON

e University of Washington by Andrew Lumsdaine

What Else is Wrong?

#include <string>
#include <iostream>

int main() { $./a.out
std::string contents; Today is a good day for HPC!
| Today is a good day for HPC!

std::cin >> contents;

std::cout << contents << "_";

std::cin >> contents;

std::cout << contents << "_";

std::cin >> contents;

std::cout << contents << "_";

std::cin >> contents;

std::cout << contents << "_";

std::cin >> contents;

std::cout << contents << "_";

std::cin >> contents;

std::cout << contents << "_";

std::cin >> contents;
std::cout << contents << std::endl;

return O;

NORTHWEST INSTITUTE for ADVANCED COMPUTING \7’/ 'W'
Pac'rﬁgNorthwest / /s

IONAL LABORATORY

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of

117 WASHINGTON

Getting a Line of Input

« Use std::getline() ; $./a.out
getline() Today is a good day for HPC!
#include <iostream> function Today is a good day for HPC!

#include <string>

Stream to get
int main() { 5 Where to put

line from the line
std::string Contenfs;

std::getline(std::cin, contents);

std::cout << contents << std::endl; * Gets entire line of text, with
no tokenization

 Make sure you understand
getline() vs >>

return O;

NORTHWEST INSTITUTE for ADVANCED COMPUTING

G NATIONAL L. AT J %
i - i ifi i i UNIVERSITY of
AMATH 483/5.83 ngh Performance Scientific Computmg Spring 2019 : Pty Ot e S
University of Washington by Andrew Lumsdaine)

Types
Variable type| Variable name
« Variable definition _
/ /
std::string contents; | VVariable hame
int x;
double y; —

T~

Variable type

« C++ has many built-in types: int, double, char, etc
« Other types are defined for libraries (accessed via #include)

« Almost always class definitions

NORTHWEST INSTITUTE for ADVANCED COMPUTING ~ A
Paciic povitwest -

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : P —
University of Washington by Andrew Lumsdaine ! Sl b

UNIVERSITY o

of
119 WASHINGTON

Declaring and Initializing Variables

* In the old days variables were « Now they can be defined

declared at the beginning of a anywhere in the block
block . .
int main () {

int main () { /).
double x, y; —| Declaration double x = 3.14159;
22mee double v = x x 2.0;
x = 3.14159; /) .. ; .
y = X * 2.0;\\\ return O;\\\\\ Dgckﬁayon}NWh
VYA Use \ initialization
return O; : _

} « Best practice: Don’t declare variables before

they are needed and always initialize if possible

NORTHWEST INSTITUTE for ADVANCED COMPUTING ~ A
Paciic povitwest -

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : [—
University of Washington by Andrew Lumsdaine } b

UNIVERSITY o

of
120 WASHINGTON

More about string

Declare
std::string s; — empty string
std::string t = "Hello World";

std::string u = t; —__ | Declare string

std::string v = s +

and copy from t

Declare string object and
initialize with characters
(Note “Hello World” is not
a C++ string object)

int length = v.size();

\

NORTHWEST INSTITUTE for ADVANCED COMPUTING

+ operator concatenates
two string objects

size member function
returns length of string

AMATH 483/583 High-Performance Scientific Computing Spring 2019 / g UNIVERSITY o

University of Washington by Andrew Lumsdaine

of
WASHINGTON

Example

#include <iostream>
#include <string>

int main () {

std::string msg_1 = "Hello";

std::string msg_2 = "World";

std::string message = msg_1 + " " + msqg_2;
int msg_length = message.size();

std::cout << "There_are " << msg_length << " characters_in";
std::cout << "\"" << message << "\"" << std::endl;

return 0O;

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : i UNIVERSITY of
. . . : 3 forthe Ui 4 By WASHINGTON
University of Washington by Andrew Lumsdaine)

