NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583
High Performance Scientific Computing

Lecture 17:
Distributed memory, communicating sequential
processes

Andrew Lumsdaine

Northwest Institute for Advanced Computing
Pacific Northwest National Laboratory
University of Washington

Seattle, WA

Overview

* Distributed memory systems

« Communicating sequential
processes

* Message passing
* The message passing
interface

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Scaling progression of CPUs

Simplest model

AN

NORTHWEST INSTITUTE for ADVANCED COMPUTING

Pipelining

Pipelining

AN

CPU fetches and
executes instructions

Fetch Q}structions |

Decode
RRead | ¥

Execute [o |
RWrite | \y Data

I'I'I'I'I'I'I'I'I'\I'

Many cycles per
instruction

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Instructions are
fetched in a stream

[<

Fetch is Instructions |
Decode | is
R Read ia

L

Execute | i3
R Write | i < Data >

Processed in

a pipeline Along trip

NORTHWEST INSTITUTE for ADVANCED COMPUTING

from memory

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

W

UNIVERSITY of
WASHINGTON

W

UNIVERSITY of
WASHINGTON

Hierarchical memory

Use special, fast

memory to keep data
and instructions close

<Ir:13tructions |

TTTTTTTTTTT

< Data >

Multicore CPUs

Replicate 2X

NORTHWEST INSTITUTE for ADVANCED COMPUTING

LI

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Cores share
slower memory

fo
51
rn
3
4
s
"6
7

L1

Pacific Northwest

()

— | L2

L1

Q}structions |

D)

L3

N2

30

10

— I

Caches need to be | |[
kept coherent 7

51
rn
3
4
s
e
r

L1

(U}

< Data >

L2

L1

ET\IT

D)

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

W

UNIVERSITY of
WASHINGTON

W

UNIVERSITY of
WASHINGTON

Even more cores

Cores share Include super-

Replicate 4X slower memory slow DRAM
LLLLLLLLLIA
AT W e
e L) [
| 2 (BN g s EY
E : ('-[;) (L[;) : £W E@structions |
= r7 [P — LI [—E —
Jormr—— " = E
/2 n L1 L1 51 %— -
z 0 0 z o] < Data >
Caches need to be {1 1|” LR E
13 6 W
kept coherent | | I O O 0 7

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Symmetric Multi-Processor (SMP)

Memory may be
uniformly shared
among sockets

Multiple CPU
chips

TTTTTTTTTTT

61

AKA “sockets”

,,,,,,,,,,, Uniform memory
access (UMA)

/

CEEERY

TTTTTTTTTTT

i

AN

Caches still need to
be kept (somewhat)
coherent

mE LB

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Pacific Northwest
N ey

nnnnnnnnn f
WASHINGTON

Asymmetric Memory may be non-

Multiple CPU uniformly shared
chips among sockets

Non-uniform
memory access
(NUMA — most

common)

AKA “sockets”

Caches still need to
be kept (somewhat)
coherent: CC-NUMA

vvvvvvvvvvv

The Next Step

Put sockets Put blades Put chassis Put racks in Put centers
on a blade in a chassis in a rack a center in the cloud

e TR S
1 e [S

Then you have a supercomputer

But howdo |
you use it? |

Need More Power? Buy More Hardware!

More cores! Mor.e More racks! More
chassis! centers!
N\ \\
= = HEl: = ; \ g = ;
9 T =y .

e
i

e
T

= I
<—=I—>H
T

I

NORTHWEST INSTITUTE for ADVANCED COMPUTING

3/5: g Performance Scientific Comput g i ng 2 / ~ [universiTYer
Un of Washington by Ad w Lumsdai / £ - /ASHINGTON

Top500 November 2018

Rmax Rpeak Power
Rank Site System Cores (TFlop/s) (TFlop/s) (kW)
1 DOE/SC/Oak Ridge National Summit - IBM Power System 2,397,824 143,500.0 200,794.9 9,783
Laboratory AC922, IBM POWERY 22C 3.07GHz,
United States NVIDIA Volta GV100, Dual-rail
Mellanox EDR Infiniband 2.4M
IBM
2 DOE/NNSA/LLNL Sierra - IBM Power System 1,572,480 94,640.0 125712.0 7,438 cores
United States S$922LC, IBM POWER? 22C 3.1GHz,
NVIDIA Volta GV100, Dual-rail
Mellanox EDR Infiniband 1'5M
IBM / NVIDIA / Mellanox
cores
3 National Supercomputing Center in Sunway TaihuLight - Sunway MPP, 10,649,600 93,014.6 125,435.9 15,371
Wuxi Sunway SW26010 260C 1.45GHz,
China Sunway 10M
NRCPC
4 National Super Computer Center in Tianhe-2A - TH-IVB-FEP Cluster, 4,981,760 61,4445 100,678.7 18,482 cores
Guangzhou Intel Xeon E5-2692v2 12C 2.2GHz,
China TH Express-2, Matrix-2000

NUDT

NORTHWEST INSTITUTE for ADVANCED COMPUTING ~ W
PaCIfji:_ Northwest /

. CASORATON

AMATH 483/583 High-Performance Scientific Computing Spring 2019 | UNIVERSITY of
WASHINGTON
University of Washington by Andrew Lumsdaine

There are no parallel computers

NORTHWEST INSTITUTE for ADVANCED COMPUTING " W

Pacific Northwest
AT LASORATORY

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

It’s really just a bunch of computers

Separate
memory

(Each has its
own 0S)

(Each has its
own memory)

(Each has its
own storage)

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNT ITY of
WASHINGTON

There are no parallel programs

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 / SUNIVERSITHor?
University of Washington by Andrew Lumsdaine

It’s really just a bunch of programs

Separate
memory

(Each has its
own 0S)

(Each has its
own memory)

(Each runsiits
own programs)

(Each has its
own storage)

NORTHWEST INSTIT

AMATH 483/583 High-Performance Scientific Computing Spring 2019] UNIVERSITY of /
. / WASHINGTON |
University of Washington by Andrew Lumsdaine |

Distributed memory

Fetch is @structions | Fetch i6 @structions |

| - _ -
- - - —

— Decode | is ,': —] Decode | is —

- RRead | is - - RRead | ia =

— Execute | i3 ,': — Execute | i3 —

— R Write | g ,': Data — R Write | g — Data

- - < :—: > - — < :—: >

Ty L1
LI LI

< Interconnect >

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of |
WASHINGTON |

Distributed memory

Lt NA L A AN

1 j
B K== 1
F " L1
[ol .
3 |
— L2 L | % 7 — | L2 !
. = = |Tw] L= L1 — @s’(ructions |
— — - I -
= E U = © E
. 1| E — sl E
dry e 5 dry [. 5
— rn %] - I/l L1 —
il TE 3 |5 B | & FE=D
R| 2 — (R| |2 — |2
E 4 — ? ;4 [——
o e o [i
7 [:l_ r7
L i
Interconnect

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Pacific Northwest

Distributed memory

ENiE I mimi

D] :2) (U}

% rj —| 2 — |
[l e : 3 . - paetors |
O\ 7 [© 3 = © 2
] 7 LI 5 — I N -
_ B E = B | E
= o = — E
] ﬁ% 51 L1 : L F Dat
|51 [_w) E “‘E&* 0 - < _Data_ >
- D — F

7] : —| L2 — |2

iw s 1 L1

T T) ©)

r7 L JL_J —_—
T T LARAALLELLLY

Interconnect

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

W

WASHINGTON

Distributed memory

[I T mininm
] [u e e f
o] i e B b
_ % rj — | 2 = — E —| -
| fe= HE=h | o=
= T E = 3
AU = © E = | . 3
S — — || F — B E
1n [I E I I E
EE L1 : - L F
3 |5 e s E o > 1| e e - (o >
—{ r3 —J —
% = 12 : — |
=1 [T L1 L1
B s
7 ——JJ SN § SN S—
T T LAAALALLALAY

Interconnect

NORTHWEST INSTITUTE for ADVANCED COMPUTING ~ W
Paclfj‘g Northwest

AMATH 483/583 High-Performance Scientific Computing Spring 2019] \ UNIVERSITY of
. / WASHINGTON
University of Washington by Andrew Lumsdaine

Distributed Memory

. Toh
LELLLLLLlLd Copythls LLLLLLLLLLd O ere

3] I §] I

o] Pl e iii e)

GINEE — |2 | I - — | !
1B |po=]| |je=
- — |wsl|E - || E
E I ey I S [N = P vy R
el - = > | 3 = (o>

[R] — | [R] : — | 2

BEKEs] | | R

L I I A I LI I B B B B e TO here
And copy this
Interconnect

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

W

WASHINGTON /

Pacific Northwest

Distributed memory

rstrctions]| L1
2 U]

3

T4 — | 2

s L1
L] ©)

14

"'|°|

) [

EREEE

 ELEC

L3

L3

o

rn L1
-)

3 S

T4 —| 2

3 L1
e D)

i

¥l

S ERP

m

=]

LErEEm

mrrrrrrrTrT L e

Interconnect

NORTHWEST INSTITUTE for ADVANCED COMPUTING ~ | W
Pacific Northwest

AMATH 483/583 High-Performance Scientific Computing Spring 2019] VUNIVERSITY of,
University of Washington by Andrew Lumsdaine |

Do we want these
doing the exact
same thing?

Distributed memoi

LR~ HEFEEM

Ll LI e

< Interconnect

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

W

UNIVERSITY of |
WASHINGTON

Pacific Northwest

. . Do we want these .
Distributed memol " Will there be
doing the exact)
. speedup if we do?
same thing?
LELLLLLLlLd IIIIII/I/fIII
3 [I ENa I
o e 5 i HE i
B — P B — |2
JIE E JIE 3
8= | = 1BE=G] | |
= — — |5 |E = — || E
1 [® wuiE 3 1 [® wulE 3
3| e <emetena| ﬁ‘mg» |] <o) ;
E s 1 i s
¥ P P L o
< Interconnect
What was Remember this
his law? famous person?
Distributed memorv Can we keep all the data on
As we add more every node if we keep Hint: No
nil CPUs, we make the making the problem bigger?
3 [. ERN I
A (mms| problem bigger] P G| &
el [I [l |2 —| 2
1/E 3 1/ 3
2B a)|)| |F e ImE=s] | |E
— — || E = — |el|F
EIENE | |E EIENEE 1 |E
;_] E |] <o) E
) 12 [l — =
E s 1 i s
B ul |l | als
7 —- 7 (N | S) —

Hint: No But. Do we need
all the data on

every node?

<

mrrrerconnect
What was Remember this
his law? famous person?

3 High-Perform:

26
of Washingrom oy rmorew-camsmam

Distributed memory | Does it grow with And we probably
What about problem size? need all of it
LELLLLLLlLd theprogram? LLLLLLLLLLd
[[—r— H [— —— ——
o e u ol i
B — P B — |2
= |E] E _m I 3
EJVL::“@(LS) E :j"l::ﬁm(ﬂ) =
= — — |5 |E = — || E
a3 [I E i [I E
318 < ﬁ‘mg» =l Il o e E
_ % :i é L2 i 7 % :i L L2 i
E s 1 i s
lem e B
@ Hint: No @
< Interconnect
What was Remember this
his law? famous person?
Distributed memory What do we keep?
?
Do we need all the What do we not keep~
L1l LLLLLLLLLLd
i data on every node? = o E——
i :; Instructiol m i r; IEI;
By — P B — |2
|k [3 ., |k [E
5%::“«“3 : N :j"l::“EQFS) .
= — — |5 |E = — || E
a3 [I E [I E
318 < E 3|9 < E
e, f<=> 1B =l |
E s 1 i s
lem e — |EEEs

mrrrrrrrTrT :: T ::

< Interconnect >

Pacific Northwest

AMATH 483/583 High-Performance Scientific Computing Spring 2019 | A AN A7 /

University of Washington by Andrew Lumsdaine

Distributed mem¢ But, Again. What do we
keep? What do we not keep? || Some goes here

— L some goes here e B—

o] e s | o] P e) ——
| f=cHl | |
= — T |sl|E = — T |ul|E
O o | RN S Y M | S

Heesns]” Heesla] | f

mrrrrrTrrTrT 7\ L

The union of the two should “Collectively exhaustive”

nect
be the whole problem | >

NORTHWEST INSTITUTE for ADVANCED COMPUTING
Pacific Northwest

AMATH 483/583 High-Performance Scientific Computing Spring 2019 / UNIVERSITY of
. | WASHINGTON
University of Washington by Andrew Lumsdaine

Name this famous person

8 . coltRAHNG
Parallel Computing
Volume 7, Issue 1, April 1988, Pages 11-24
ELSEVIER

A single-program-multiple-data computational model for

Frederica Darema

(Director, Air Force EPEX/FORTRAN
. . . F. Darema, D.A. Gforge, V.A. Norton, G.F. Pfister
Office of Scientific ’
B Show mo
Research)

Single program
m U |t i p I e d ata -multiple-data computational model which we have

stem to run in parallel mode FORTRAN scientific

m O d e I (S P M D) mputational model assumes a shared memory
rgermzeToTTemerswerseerort the scheme that all processes executing a program in

parallel remain in existence for the entire execution; however, the tasks to be

executed by each process are determined dynamically during execution by the use

ppriate synchronizing constructs that are imbedded in the program. We have

trated the applicability of the model in the parallelization of several

ions. We discuss parallelization features of these applications and

lance issues such as overhead, speedup, efficiency.

Most widely used
model in distributed
memory programming

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

WASHINGTON /

SPMD These are

Single h Single
program the same program

0 I I
5 L1 w L1
2 0 D] [}
0 —|e < Bl = —
< etcions] u
My

N e

[

L] D)
7

i

L3

o

,_
©
LI I

LY uq

51 2 0

—{ r3 |

[R] —| 2 L2

lEl 7 L1 L1

W 7) m © .

T Multiple

i

Multiple These are not i/ data
data the same

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Name this famous person

Parallel Computing
Volume 7, Issue 1, April 1988, Pages 11-24

ELSEVIER

F red erica D arema A single-program-multiple-data computational model for
Director, Air Force EPEX/FORTRAN
(’ \

. . . F. Darema, D.A. Gorge, V.A. Nor
Office of Scientific ’
How do you

Research) 9
Single program pronounce

. “ 4
multiple data |.. SPMD"? | .
stem to run in parallel mode FORTRAN scientific

model (SPMD) [npuatpociomebe s

rgerTZEToTTeTeTsTerseaor the schy ram in
parallel remain in existence for the e Reca I I F Iyn n :
executed by each process are detert e use

ppriate synchronizing construl Sl M D’ M I M D e have

trated the applicability of the
ions. We discuss parallelizatiory/features of these applications and
lance issues such as overhead, speedup, efficiency.

Most widely used
model in distributed
memory programming
by ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 20
University of Washington by Andrew Lumsdaine

Better model for
today’s practice
than Flynn’s

SPMD is pronounced
“spim dee”

Distributed memory Hint: Resource

What goes here? illocatlon What goes here?
—lii——— | (On the node) — 1 (On the node)
D 4) | s

3

7 L2
s L1 /
o - ©)

~

N e

]

N e
|

7

14
L3

el

u —|

s L1
e D)

7

o

[B}
r U]

3 S

I

3
= — | /
s L1
L] ©) :
L2

i
. “ o Process

i

E

LErEEm
LEr e

/ Interconnect >
/

And, back in the day,
a sequential process

- AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Distributed “Sequential” “Sequential”
process process
I NN / LILLL bl /
3] I —7’—
o =15 || /] ==
|l :; _1 ¢ = =l L1 N F
B | |] _ <G]
1nm — |E = — " |E
=5 || |k - e} g == | e
JEW by & i__
' Data dependencies are {}
probably not disjoint

Can’t access
it directly

|

This data may be needed
by another node

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

vvvvvvvvvvv of
WASHINGTON

Pacific Northwest / w

Distributed “Sequential” “Sequential”
process process
LLLLL LiLtl y4 LELLLELiLdl /
=) — 14
5\/ 9‘ g g Instructions g :E:) g
q ~"E ElE 1 1E
' @m£> E :E @Eiu %ﬁﬂ}
5 o™
_ _\

[y L
MICTICUTINIcut

<

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019

University of Washington by Andrew Lumsdaine

Pacific Northwest

UNIVERSITY of

WASHINGTON

“Sequential”

process

process

LLLLLErLtrd / L rrtl /
R [A F L_7_
o] [0|,/ i b o
ul ri — - 4 | u = L2
il =T

— || E = R

Vel T |E E [N =
E s 1 E
¥ o] | : L—El’

NORTHWEST INSTITUTE for 4

mrrrrrrrTrT

\
b

I

Y

P .
mierouririeut

<

/

What are these sequential
processes doing?

University of Washington by Andrew Lumsdaine

UNIVERSITY of

WASHINGTON

Recall this famous person

Progra\.mming 8. L Graham, R. L. Rivest
An Axiomatic Basis for é’m“‘“es . E;‘f“s
. ommuni
Computer Programmlng R ca 1ng
equential Processes
C. A. R. Hoare C.AR. Hoare
The Queen’s University of Belfast,* Northern Ireland The Queen’s University

Belfast, Northern Ireland

" 4
In this paper an attempt is n CS P

; This paper suggests that input and output are basic
tions of computer progran

primitives of programming and that parallel
were first applied in the s (pronounced ition of icati ial p isa
been extended to other fundamental program structuring method. When
volves the elucidation of se|) combined with a development of Dijkstra’s guarded
. . S e e e SS p e a command, these concepts are surprisingly versatile.
which can be used in pro — -

Their use is illustrated by sample solutions of a variety
of familiar programming exercises.
Key Words and Phrases: programming,

programs. Examples are given of such axioms and rules, and
a formal proof of a simple theorem is displayed. Finally, it is

argued that important advantages, both theoretical and prac- prog) g | programming pri 5
tical, may follow from a pursuance of these topics. program structures, parallel programming, concurrency,
C . A . R (TO ny) H 0 a re input, output, guan;ed commands, nondeterminacy,
coroutines, procedures, multiple entries, multiple exits,
l classes, data rep i recursion, diti
critical regions, monitors, iterative arrays
. ’ CR Categories: 4.20, 4.22, 4.32
PS: These aren’t
even what he is :
NORTHWEST INSTITUTE for Al /
most famous for | reereseni, | W

omputing Spring 2019 | ,‘ UNIVERSITY of
y WASHINGTON
University of Washington by Andrew Lumsdaine

Distributed memd what do we keep? What do

we not keep? What goes here?
TR Whatgoeshere? TN

[[o] muln [EREE meimnien

] P e] P e & —
E1Re — | 2 B — |2
J1E = E J1E = E
llel== e =R ll== e <
- — |wsl|E - || E
E e P | e =y
=] <= =]) =D

E Is |E | s

EICE=s =[5 f

mrrrrrrTrTT /N L

The union of the two should “Collectively exhaustive”

jnect
be the whole problem | >

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

Back to our trusty example (one of them)

4.5

* Find the value of 7T

* Using formula

) .
4 2.0
dx

™ = _—
0 1—|—CC2 1.5} §

0.0 0.2 0.4 0.6 0.8 1.0

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 y UNIVERSITY of
WASHINGTON
University of Washington by Andrew Lumsdaine /

Example

4.5

* Find the value of 7T

3.5

* Using formula -

>
2.5

1
4 2.0
= " _dz
0 1—|—CC2 1.5} §

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

W

UNIVERSITY of
WASHINGTON

Numerical Quadrature

4.5

4.0 = - g

3.5 g

d A=h—— |
L7 0 1+ (ih)?
25 0

2.0 h

A
\/

i+1
15 N-1

1.0
0.0 0.2 0.4 0.6 0.8 1.0

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Numerical Quadrature

4.5

4.0 N-1

35 —~ 1+ (th)2 | -

3.0 4

>
25| 0

2.0 h

A
\/

i+1
15 N-1

1.0
0.0 0.2 0.4 0.6 0.8 1.0

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Pacific Northwest
= | universiTy o

/

/

Numerical Quadrature (Sequential)

4.5 ‘ ;
double pi = O;
4.0 for (int i = 0; i < N; ++i) { 1
A s . . .
35 X pi += h * 4.0 / (1 + ixh*ix*h);|
3.0 T~]
>

2.5 0 1 5 4
2.0 -~ h ~ 3 I »

< > i+
15 " N-1
1.0 Y

0.0 0.2 0.4 0.6 0.8 1.0

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Parallelization Strategy

* How do we go from a problem PATT ERNS
want to solve FOR PARALLEL

+ And maybe know how to solvel L ROGRAMMING

sequentially :
* To a parallel program
* That scales

| SOFTWARE PATTENNS SERIES |

NORTHWEST INSTITUTE for ADVANCED COMPUTING

Timothy Mattson, Beverly Sanders, and Berna Massingill. 2004. P&WWW&WWS&WMFI&WW%%H%&?W Profef
University of Washington by Andrew Lumsdaine |

Parallelization s Not really by task

Decompose problem into pieces

/ .
Finding | that can execute in SPMD (sTgIe program)
Concurrency
1# \ Manage sharing By task or
(communication) by data
Algorithm
Structure | Fundamental
! organizing principle \ Around tasks or around
Supporting : : data decomposition or
Structures |~ Programming paradigms around data flow
3 and data structures: SPMD]
Not really by task
Implementation Manage processes multiple data
Mechanisms | — gep .. (P)
communication

NORTHWEST INSTITUTE for ADVANCED COMPUTING

Timothy Mattson, Beverly Sanders, and Berna Massingill. 2004. P&Pt’éfﬂiWW&/@TWSWWW%%FWQW’R%MMW%@W Profe, WASHINGTON

University of Washington by Andrew Lumsdaine

Finding Concurrency
0.25 0.5 4 0.75 1
= 17 = Lt e [
0.25 1 + 2 0.5 1+a? 0

2
J .75 I+x
4.5

O——0] 1t .

3.5} - \ | 17 l
3.0f | 1 [1L |

>

231 | 1 I i \

2.0 f

1.5¢ R RS i G 4

AMATH 483/583 High-Performance Scientific Computing Spring 2019 i emoeivses | UNIVERSITY
University of Washington by Andrew Lumsdaine L

Finding Concurrency

4.5

4.0

3.5

3.0

2.5

2.0

1.5

I1.o
0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

025 4 0.5 4 075 4 1 4
7r=/ 2dx—|—/ 2d:c+/ 2d:c—|—/ —Qda:
0 1+37 0251"‘55 0.5 1+$ 0'751"‘.@
4.5 4.5 4.5
—] 4.0l 1 4.0l 1 a0l 1
L] 3.5\ 3.5] 3.5} i
- { 30} : 3.0\ 3.0t :
I 1 23] 1 25y 1 25\
i 1 2.0} 1 2.0} 1 20}
. 1 15} 1 1.50 1 15l 1
A 0 1.0
0.25z 0.25 0.5 . 0.5 0.75%M0.75 1.0 ‘
X x o
Finding Concurrency
025 4 0.5 4 075 4 1 4
e [[[T [
0 1+37 0_251"‘55 0.5 1+$ 0'751"‘.@
4.5 4.5 4.5
1 a0l 1 4.0l 1 aol 1
] —
| , L , L B
3.5 >>\ 3.5 3.5
3.0 3.0 {1 30} .
h\
—
2.5 2.5 2.5k 1
2.0 2.0 2.0
1.5 1.5 1.5
al.o . 1.0
0 0.25k4 0.25 0.5 0.5 0.75M°0.75 1.0

I1.o

48

ce Sci

[— 110N bY Ao

Finding Concurrency

N/4-1 4 N/2—-1 3N/4—1 4 3N—-1
™ hZ T ath Z T th Y T th Y e
+ (1h)? zh + (ih)?
i=0 —N/4 i= N/2 i= 3N/4
4.5 4.5 4.5
4.0 1 aof 1 4.00 1 a0}
] —
3.5 3.5 S 3.5 {1 35}
I~ ~_
3.0 3.0 3.0 P 1 3.0}
[~
~__
2.5 2.5 2.5 — 2.5}
2.0 2.0 2.0 2.0
1.5 1.5 1.5 1.5
I1.o al.o .1.0 1.0
0 0.2508 0.25 0.5 0.5 0.75M°0.75 1.0
% 49 e L . ce Sci — y ¥ —
Finding Concurrency
_ N/2—1 3N/4—1 N-1
N/4—1 4 h/ ; 4 . 4
Ry, s b s R e P T
T2 1+ (ih)2 1+ (ih)2
— 1+(h) i= N/4 i=N/2 (ih) i=3N/4 (ih)
4.5 4.5 4.5 4.5
4.0 1 aof 1 4.00 1 a0}
] —
3.5 3.5 S 3.5 3.5
I~ ~_
3.0 3.0 3.0 P 1 3.0}
[~
~__
2.5 2.5 2.5 — 2.5}
2.0 2.0 2.0 2.0
1.5 1.5 1.5 1.5
I1.o al.o .1.0 1.0
0 0.2568 0.25 0.5 0.5 0.75M°0.75 1.0
% 50 e L . ce Sci — y ¥

Finding Concurrency

for (int i
pi += h * 4.0 / (1 + ixh*i*h);

= begin; i < end; ++i) {

}
int i = 0; i < N/4; ++i) { L i < N/2; ++i) { [/2; i < 3%N/4; ++i) {N/4; i < N
+= h * 4.0 / (1 + ixhx*ixh); / (1 + ixh*ixh); 0 / (1 + ixhx¥ixh); / (1 + ix
] —
3.5 3.5 e] 3.5¢ { 35} :
[~ ~_
3.0 3.0 3.0 P { 3.0} :
~
~__
2.5 2.5 2.5 — 2.5F :
2.0 2.0 2.0 2.0
1.5 1.5 1.5 1.5
1.0 1.0 1.0
I 0 0.25a 0.25 05. 0.5 0.75M70.75 1.0
x X x
Finding Concurrency | it main0 ¢
N/4-1 A double pi = 0.0; int N = 1024%1024;
v e [
72
1 1+ (ih) ™~ for (int i = 0; i< N/4; ++i)
pi += (bx4.0) / (1.0 + (i*h*ixh));
N/2—1
;sz: | I —for (int i = N/4; i < N/2; ++i)
_N/41+(Zh pi += (h*4.0) / (1.0 + (i*h*ixh));
3N/4-1 for (int i = N/2; i < 3*N/4; ++1i)
h L i += (h*4.0 1.0 + (i*h*ixh));
> T m)? p (h*4.0) / (()
i=N/2
for (int i = 3*N/4; i < N; ++i)
/ pi += (h*4.0) / (1.0 + (i*h*ixh));
Y «
1+—zh . .
i=3N/4 std::cout << "pi T " << pi << std::endl;
return 0;
NORTHWEST INSTITUTE for ADVANCED COM }

int main() {

Registers
Stack for (int i = 0; i < N/4; ++i) { double pi = 0.0; int N = 1024x%1024;
pi += (h*4.0) / (1.0 + (ixh*ixh));
}
% for (int i = 0; i < N/4; ++i)
i += x4 . . + jkh*i* 0
Task | pi (h*4.0) / (1.0 + (i*h¥ixh));
Registers
for (int i = N/4; i < N/2; ++i) { g S o & o 449
Stack O ety s 0y by ﬂ.(lnt i=N/4; i< N/2,' 1?
% y pi += (h*4.0) / (1.0 + (i*h*ixh));
for (int i = N/2; i < 3*N/4; ++i)
Registers pl += (h*x4.0) / (1.0 + (l*h*l*h)),
Stack for (int i = N/2; i < 3*N/4; ++i) {
pi += (h*4.0) / (1.0 + (i*hxixh));
% } fory,(int i = 3xN/4; i < N; ++i)
pi += (bx4.0) / (1.0 + (ixh*ixh));
[
Registers Task
.. n 1 n 1 .. .
Stack for (int i = 3#N/4; i < N; ++i) { BHE SEelE S T S pA S Ees emelly
pi += (B*4.0) / (1.0 + (i*h*ixh)); return 0;
‘ L }
53 J
Mﬁ‘“—@ double pi = 0.0;
Registers
Stack f";i(i‘:‘t(;*zg; jzlb_l(/fi Zi})l*i*h)), void pi_helper(int begin, int end, double h) {
% } for (int i = begin; i < end; ++i)
\ pi += (h*4.0) / (1.0 + (ixh*ixh));
[Task }
Registers
Stack for (imt i = N/4; i < N/2; ++i) { iNt main(int argc, char* argv[]) {
% , pi += (B*4.0) / (1.0 + (i*h*i%h)) t N = 1024 * 1024; double h = 1.0/ (double)N;
: :thread tO(pi_helper, O, N/4, h);
» :thread t1(pi_helper, N/4, N/2, h);
Registers e 7 o L :thread t2(pi_helper, N/2, 3*N/4, h);
or (int i = ; 1< 3% ; i .
Stack pi d= (B%2.0) / (1.0 + (i+hrish))] std::thread t3(pi_helper, 3*N/4, N, h);
}
% .join(O; t1.join(); t2.join(); t3.join();
[Task L .
Registers std::cout << "pi is " << pi << std::endl;
Stack for (int i = 3xN/4; i < N; ++i) {
‘ pi += (h*4.0) / (1.0 + (i*hxi*h)); return O:
} 3
2 }

Finding Concurrency | it main0 ¢
N/4-1 4 double pi = 0.0; int N = 1024%1024;
h — ™
; T+ (ih)? | [T for Gint i = 0; 1 < N/4; ++i)
pi += (bx4.0) / (1.0 + (i*h*ixh));
N/2-1
}sz: : | I —for (int i = N/4; i < N/2; ++i)
e 1+ (ih)? pi += (h*4.0) / (1.0 + (i*h*i*h));
3N/4-1 for (int i = N/2; i < 3%N/4; ++i)
h 0 =
Z e] pi += (h*4.0) / (1.0 + (ixh*ixh));
1=N/2
for (int i = 3*N/4; i < N; ++i)
N-1 / pi += (h*4.0) / (1.0 + (i*h*ixh));
h
P L
= std::cout << "pi " << pi << std::endl;
return 0;
NORTHWEST INSTITUTE for ADVANCED COM }

ro Task | double pi = 0.0;
Registers
f int i = 0; i < N/4; ++i
Stack o;i(i:t(;*4_o) ; El.(/) N Zii*i*h». void pi_helper(int begin, int end, double h) {
% } for (int i = begin; i < end; ++i)
- ’\ pi += (h*4.0) / (1.0 + (ixhxixh));
[Task }
Registers
Stack for (imt i = N/4; i < N/2; ++i) { iNt main(int argc, char* argv[]) {
% , pi += (B*4.0) / (1.0 + (i*h*i%h)) t N = 1024 * 1024; double h = 1.0/ (double)N;
: :thread tO(pi_helper, O, N/4, h);
» :thread t1(pi_helper, N/4, N/2, h);
Registers | e 7 o L :thread t2(pi_helper, N/2, 3*N/4, h);
int i = ;1< 3% § q
Stack 0;112 é*40) /tLO +(iﬂwi;n); std::thread t3(pi_helper, 3*N/4, N, h);
¥
% .join(O; t1.join(); t2.join(); t3.join();
[Task L .
Registers std::cout << "pi is " << pi << std::endl;
Stack for (int i = 3xN/4; i < N; ++i) {
‘ pi += (h*4.0) / (1.0 + (ix*h*ixh)); return O:
} 3
2 } '

Processes [

Process
int main() {

double pi = 0.0; double h = 1./(double) N;
for (size_t i = 0; i < N/4; ++i)
pi+=(h *4.0) / (1.0 + (4 *h *1i *h));

std::cout << "pi is T " << pi << st
Process

\g\

Process

int main() {
double pi 0.0; double h = 1./(double) N;
for (size_t i = N/4; i < N/2; ++i)
pi+=(h *4.0) / (1.0 + (4 *h *1i*h));
std::cout << "pi is T " << pi << st

int main() {
double pi = 0.0; double h = 1./(double) N;
for (size_t i = N/2; i < 3*N/4; ++i)
pi+=(h *x 4.0) / (1.0 + (i * h * i * h)); &

std::cout << "pi is 7 " << pi << ste
Process

'

int main() {
double pi 0.0; double h = 1./(double) N;
for (size_t i 3*%N/4; i < N; ++i)
pi += (h * 4.0) / (1.0 + (i *x h x i *x h));
std::cout << "pi is T " << pi << std::endl

return 0;

}

double pi = 0.0;
void pi_helper(int begin, int end, double h) {
for (int i = begin; i < end; ++i)
pi += (h*4.0) / (1.0 + (ixh*i*h));

i\t main(int argc,

t N =

char* argv([]) {
1024 * 1024; double h = 1.0/ (double)N;

/7

AW

std::cout << "pi is " << pi << std::endl;

return 0;

}

Communicating sequential processes / SPMD

#include <tostream>

int main() {
double pi = 0.0; double h = 1./(double) N;
for (size_t i = 0; i < N/4; ++i)
pi+=(h *4.0) / (1.0+ (i *h *1i*h));
std::cout << "pi is 7 " << pi << std::endl

return O;

}

#include <tostream>

int main() {
double pi = 0.0; double h = 1./(double) N;
for (size_t i = N/4; i < N/2; ++i)
pi+=(h *4.0) / (1.0 + (i *h *1i*h));
std::cout << "pi is 7 " << pi << std::endl

return O;

#include <iostream>

int main() {
double pi = 0.0; double h = 1./(double) N;
for (size_t i = N/2; i < 3xN/4; ++i)
pi += (h *x 4.0) / (1.0 + (i * h x i * h));
std::cout << "pi is 7 " << pi << std::endl

return 0;

}

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

#include <tostream>

int main() {
double pi = 0.0; double h = 1./(double) N;
for (size_t i = 3*N/4; i < N; ++i)
pi += (h *x 4.0) / (1.0 + (i * h *x i * h));
std::cout << "pi is 7 " << pi << std::endl

return 0;

W

UNIVERSITY of
WASHINGTON

Pacific Northwest

Communlcatlng sequential processes / SPMD

de <iostream> clude <iostream> ude <iostream> clude <iostream>
int main() { int main() { int main() { int main() {
double pi = 0.0; double h = 1./(double) N; double pi = 0.0; double h = 1./(double) N; double pi = 0.0; double h = 1./(double) N; double pi = 0.0; double h = 1./(double) N;
for (size_t i = 0; i < N/4; ++i) for (size_t i = N/4; i < N/2; ++i) for (sizet i = N/2; i < 3xN/4; ++i) for (size_t i = 3+N/4; i < N; ++i)
pi+=(h*4.0) / (1.0+ (i *h * i *h); pi+= (h*4.0) / (1.0 + (i *h * i * h)); pi+=(h*4.0) / (1.0+ (A *h *i*h)); pi+=(h*4.0)/ (1.0+ (A *h=*i=*h);
std::cout << "pi is ~ " << pi << std::endl std::cout << "pi is ~ " << pi << std::endl std:icout << "pi is ~ " << pi << std::endl std:icout << "pi is © " << pi << std:iendl
return 0; return 0; return 0; return 0;

CEEEED Oy

i

I

B

CEEEEDn

Northwest
L LASORATORY

AMATH 483/583 High-Performance Scientific Computing Spring 2019 o/ UNIVERSITY of
WASHINGTON
University of Washington by Andrew Lumsdaine /

Threads double pi = 0.0;

Task
Registers
p— for (int i = 0; i < N/4; ++i) { void pi_helper(int begin, int end, double h) {
pi += (1¥4.0) / (1.0 + (ixh*i*h)) for (int i = begin; i < end; ++i)
% ¥ pi += (h*4.0) / (1.0 + (i*h*i*h));

I Task

Registers

Stack for (int i = N/4; i < N/2; ++i) {
pi += (h*4.0) / (1.0 + (ixh*i*h));
}
% d" :thread tO(pi_helper, O, N/4, h);
| . ; .
Tasng stad® :thread t1(pi_helper, N/4, N/2, h);

Registers | -_—_ﬁ;da:thread t2(pi_helper, N/2, 3xN/4, h);

Stack for (int 1 = N/2; 1 < 3xN/4; ++1) {J- std::thread t3(pi_helper, 3%N/4, N, h);
pi += (h*4.0) / (1.0 + (ixh*i*h));

iNt main(int argc, char* argv[]) {
t N = 1024 * 1024; double h = 1.0/ (double)N;

}
% .join(O; t1.join(); t2.join(); t3.join();

| Task L .
Registers L‘;E? std::cout << "pi is " << pi << std::endl;
Stack for (int i = 3xN/4; i < N; ++i) {

. pi += (h*4.0) / (1.0 + (i*hxi*h)); return O;
S)
60 . - —

Process

. Task
S Because they
h for (inti=O;i<N/‘HAﬁ.)__$.
+ pi += (h%4.0) / (1.0 + (i*h*ixm)) i T T—pN ——+—1 are readlng the
}
Threads have % _ 21 g same N
W A\N
the same bisters / ‘ Tas \ \ N .
value for N - for (int 1= N/4; i < N/{ ++1) { \ Similarly h
T % pi += (h*4.0) / (1.0 + (ixhkix /
- ¥
And if these 77— Similarly pi
are allthe = /1 [Task |
same values - for (int i = N/2; i < 3*N74; +if) 1 At least for
m pi += (h*4.0) / (1.0 + (ixh*A*h)); .
: %) reading
It is exactly | .
equivalent to == /—{ Task (Have to deal
the sequential - for (int i = 3*N/4; i < N‘; ++i) { with race when
T pi += (h*4.0) / (1.0 + (i*hxi*h)); .
l {Pl}Sl{Ql},{PZ}SQ{QQ} interference free rltlng)

{P1} NP>} cobegin S1l|S; coend{@l/\Qg}

Distributiz=] —{Progess|

Stac . .
B — WNT et This N is local to
i +=—C*4.0) / (1.0 + (i*h*i*h)) ;| h .
o 5 . this process
This N is local %/ ’ / pi P
. Z)
to this process 7 \w Can not read
ot // = from another
| for (i i = N/4; i < NFZTTFI) 1 \
But we need to || _ pi = @*4.0) / (1.0 + Gi#hxish)); N\ process
¥
read someN D | \5 memory
(et} {Process\ (In some sense
— for—Cimt—+—N/2; i < 3*N/4; ++i) { \ .
These F.)rogra'ms — pi += (h*4.0) / (1.0 + (ixh*ixh)); \ there Isan N
are all identical } AN here)
T) ’ \
- Process How do we get
And they all say | e —— . . &
N ” L for (int I = oxN/4; i < N; ++i) { the r|ght Value
read N — pi += (h*4.0) / (1.0 + (i*h*ih));
hm@ ’ for N here?
\ " / LA

nnnnnnnnnnn f
WASHINGTON

University of Washington by Andrew Lumsdaine

Distribut

Process

Registers
Stack)
B — 0; i < N/4; ++i) { N
0) / (1.0 + (i*h*i*h)); || h
S
{ cess]
Regi
To read the || e, =
“,: ” s N/4; i < N/2; ++i) {
right” N . % 0) / (1.0 + (i*h*i*h));
I
Registers ‘ Pl[C cess I
Stack
h N/2; i < 3%N/4; ++i) { N

i

:

0) / (1.0 + (ixh*ixh));

Copy to each
process

Registers

Stack
h

i

:

3*%N/4; i < N; ++i) {
0) / (1.0 + (i*h*ixh));

Copy to each
process

University of Washington by Andrew Lumsdaine

Registers
p

[Stack
h

Process

Copy to each
process

Because they

{P1} N{P>} cobegin S1||S, coend{Ql/\Qg

=.rew Lumsdaine

}

; 03 i < Nalpmbabidet N are reading
* 0) / (1.0 + (i*h*ixh)); ||k .
pi copies of N
Threads have — -
- Process It is as if they
the same —T —
. N/45 i < NSt N were the same N
value for N | — 0) / (1.0 + (i*h*i*h)); ||h ~J
T SN
And if these | — Similarly h, pi
are allthe F | Process
same values ||| for (meT=w2; 1 < swpmrrr—t—{ N At least for
I — pi += (b*4.0) / (1.0 + (ixh*i*h)); ||h di
, i readin
It is exactly JLE \\ .
equivalentto = Process Have to make
the sequential [P N consistent when
[F— 4= (hxd OV / (1 0 & (ixhsixh)); || h i
l {P,}S1{Q1},{P,}5:{Q5} interference free i writing to

maintain as if

SPMD? Single program multiple data?
Multiple data
(different limits)

#include <iostream>

int main() {
double pi = 0.0; double h 1./(double) N;
for (size_t i = 0; i < N/4; ++i)

Multiple program

pi+= (h % 4.0) / (1.0 + (i * h * i * h)); (limits hard-coded)
std::cout << "pi is T " << pi << std::endl /
return 0; #include <iostream>

}

int main() {
double pi = 0.0; dogble h = 1./(double) N;
for (size_t i = N/2; i < 3*%N/4; ++i)
pi += (h *4.0) / (1.0 + (i *xh * i x h));
std::cout << "pi is T " << pi << std::endl

return O;

3

NORTHWEST INSTITUTE for ADVANCED COMPUTING " W

AMATH 483/583 High-Performance Scientific Computing Spring 2019 / SUNIVERSITHor?
University of Washington by Andrew Lumsdaine

Single Program Multiple Data (SPMD)
Multiple data
#include <iostream> (different ||m|tS)

int main() {

double pi = 0.0; double h< 1./(double) n; | Different, provided each process

for (size_t i = begin; i < end;—*ﬁ‘i‘)—/— H H
pi+= (b * 4.0) / (1.0 + (i * h * i * b)) has a different begin, end

std::cout << "pi is 7 " << pi << std::endl |

return O; #include <iostream>

}

int main() {
— double pi = 0.0; double h = 1./(double) N;
But this is now exactly |}» for (size_t i = begin; i < end; ++i)

pi += (b * 4.0) / (1.0 + (i *x h * i x h));
the same program std::cout << "pi is T " << pi << std::endl

L~ return O;
}

Single program

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

Single Program Multiple Data

i = 0.0; double h = 1./(double) N;
=0; i<

/(1.0 + (1 *h *1i*h));
<" << pi << std::endl

retw

[

E

I

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 | SUNIVERSITHor?
University of Washington by Andrew Lumsdaine /

Single Program Multiple Data (SPMD) How do we do

these two things?

#include <iostream> How do we set
N, begin, end?

int main() {
double pi = 0.0; double h = 1./(double) N;
for (size_t i = begin; i < end; ++i) We need exactly the

pi+=(h *x4.0) / (1.0+ (i *h * i * h));
std::cout << "pi is 7 " << pi << std::endl same N everyWhere

return O; #include <iostream>

}

int main() {
double pi = 0.0; double h = 1./(double) N;
|_— for (size_t i = begin; i < end; ++i)
pi += (b * 4.0) /1.0 + (i *x h * i x h));
std::cout << "pi is " << pi << std::endl

-

These are exactly
the same program

Each program | | — return 0;

. }
computes same thing
NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

But a different begin
and end everywhere

7
Pacific Northwest
NATIONAL LASORATORY

nnnnnnnnn f
WASHINGTON

/

Single Program Multiple Data We can get N

from the

int main(size_t argc, charx argzjl)/{f///- con1n1an? line
size_t N = atol(argv[1]);

double h = 1.0 / (double)\ From every

double pi 0.0; node? That’s a
lot of typing
1

for (size_t i = begin; i < end; ++i -
pi_i += (h * 4.0) / (1.0 + (i * b =i | Bettertogetitat

just one node and
std::cout << "pi is T " << pi << std::em gand it around

return O;

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 | SUNIVERSITHor?
University of Washington by Andrew Lumsdaine /

Slngle Program This node reads g Single program: all
“a;aii; from the v still read from the
ATHO A © 0 /% Command ||ne uble pi = 0.0; command |ine
fop)(- (h * 4. o) / (1 0+ (i‘h i*h); : ;1(SJ (h * 4. a) / (1 0 ? (€8 ; h*i*h); ' ;fj)i-:hl/‘::s)

, 0 e 0 R n 0; e 0

o

¥

ANZAN

<: One sends, the

others receive

AMATH 483/583 High-Performance Scientific Computing Spring 2019 | SUNIVERSITHor?
University of Washington by Andrew Lumsdaine /

Single Program Multiple Data

How do we get
D { the same program

to different things
1

int main(size_t argc, char* argv[
size_t N = atol(argv[1]);
double h 1.0 / (double) N;
double pi 0.0

/\

While keeping

for (size_t i = begin; i < end; ++i) them the same?
pi_i += (h * 4.0) / (1.0 + (4 *

/%/

std::cout << "pi is ~ " << pi << std::e Hint: multiple data

1
return 0; / With, say, an if
Where have we already seen statement
identical functions that need

to distinguish themselves? fork()

iversitl daine

/

How did they distinguish
each other?

Slngle Program Multlple Data

e_t arge, chars argv[]) {

nt o_t argc, char+ argv[l) { nt main(size_t argc, chars argv(l) { int main(size_t argc, char+ argv[l) {
size_t N - atal(argv[l]) si N - aral(argv[l]) size_t u = atol(argv[1]); size t N = atol(argv[l])
double h = 1.0 / (double) N; doublh = 1.0 / (double) N; double h = 1.0 / (double) N; double h = 1.0 / (double) N;
double pi = o.o; double pi = 0.0; double pi = 0.0; double pi = cvo,
for (= beg: en u)) for (size_t i = begin; i < end; ++i) for (size_t i = begin; i < end; ++1i) for (size_t i = begin; i < end; ++i)
pi_i (h*40)/(104(h*i*h); pi_i += (b * 4.0) / (1.0 + (i *h *i*h)); pi_i+= (b *4.0) / (1.0 + (i *h*1i=h)); pii+= (b *4.0) / (1.0 + (*h =i *h);
std::cout << "pi is " " << pi << std::endl; std::cout << "pi is " " << pi << std::endl; std::cout << "pi is " " << pi << std::endl; std::cout << "pi is " " << pi << std::endl;
eturn 0 return & return 0;
¥ ¥ b3
e 7 ™ ™

(I

| |

Let’s say "the And each " And each process
world has P process knows % has an id in the

f

processes” the value of P range [0, P)

& & & &

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

vvvvvvvvvvv
WASHINGTON

A better name than MIMD or SPMD

distributed data

(DRPDD)

\

Pronounced
“drop dee”

NORTHWEST INSTITUTE for ADVANCED CON

AMATH 4837583 Figh- TETNG Computing Sprmg 2019 1 UNIVERSITY of

—— A . '

. WASHINGTON
University of Washington by Andrew Lumsdaine

Single Program
(T Magically get P

int main(size_t argc, charx argv[]) {
size_t partitions = magically_get_P(); I
size_t my_id = magically_get_id();

\

Magically get id

size_t N = atol(argv[il);

size_t block_size = N / partitions; I N\

size_t begin = block_size * my_id;

size_t end = block_size * (my_id + 1);
double h = 1.0 / (double) N; Oops This distinguishes

I the processes

for (size_t i = begin; i < end; ++i)
pi+=(h *4.0) / (1.0 + (i * h x i * h));

Oops
[
std::cout << "pi is T " << pi << std::endl;

return O;

AMATH 483/583 High-Performance Scientific Computing Spring 2019 UNIVERSITY of
WASHINGTON

University of Washington by Andrew Lumsdaine

Distinguished Replicated Process

int main(size_t argc, char* argv[]) { No and no.

size_t partitions = magically_get_P(); —
size_t my_id = magically_get_id(); | Is that going
siz?_t N o -1; Only one to be correct?
if (0 == my_id

N = atol(argv([i]); — node reads N /
¥
size_t block_size = N / partitions; .
size_t begin = block_size * my_id; CompUte begln
size_t end = block_size * (my_id + 5 | and end
double h = 1.0 / (double) N; Is that going
for (size_t i = begin; i < end; ++i) to be correct?

pi += (b * 4.0) / (1.0 + (@ * h * i * h)); | g

Only one node /

if (0 == my_id) { -~ y . .

std::cout << "pi is " " << pi << std: tendl; — | prints pi
¥
return 0;

Entific Computing Spring 2019 ‘,"‘ ™ AT e o

UreTsty of Wasmmgton By Andrew Lumsdaine

Distinguished Replicated Process

int main(size_t argc, charx* argv[]) {
size_t partitions = magically_get_P();
size_t my_id = magically_get_id();

size_t N = i What is this

if (0 == my_id) {

N = atol(argv([i]); value?
} ////”///

size_t block_size = N7/ partitions;

size_t begin = block_size * my_id;
size_t end block_size * (my_id + 1);
double h 1.0 / (double) N;

for (size_t i = begin; i < end; ++i)
pi += (b * 4.0) / (1.0 + (i * h x 1 *x h));

if (0 == my_id) {

std::cout << "pi is 7 " << pi << std::endl;

}

return O;
}

| UNIVERSITY of
ntific Computing Spring 2019 SUNIVERSITHor?

UneTsty of Wasmmgton By Andrew Lumsdaine

Distingt

my_id ==

eplicate

m

y_id ==

SesS

my_id ==

int main(size_t argc, gffar argv[]) {
size_t partitions4 magically_get_P();
size_t my_id = magically_get_id();

size_t N =-1;
if (0 == my_id) {

N = atol(argv[il);
}
size_t block_size = N / partitions
size_t begi = block_size * my_id;
size_t end

double h = 1.0 / (double) N;

for (size_t i\ begin; i < end; ++i)
pi += (h *x 4\0) / (1.0 + (* h * i * h));

if (0 == my_id) \{
std::cout << "

}

return 0;

}

N gets

set here
i

= block_size * (my_id + 1);

i is ~ " << pi << std::endl;

if (0 == my_id) {
N = atol(argv[i]);

double h

for (size_!
pi += (b

if (0 == myMd) {

}

std::cout < "pi is ~

int main(size_t argc, #har+ argv(]) {
size_t partitiong/s magically_get_P();
size_t my_id = magically_get_id();

size_t N =-1;

ock_size = N / partitions
size_t bbgin = block_size * my_id;

= block_size * (my_id + 1);
= 1.0 / (double) N;

i = begin; i < end; ++i)
4.0) / (1.0 + (1 * h * i x h));

D @z

pi << std::endl;

return 0

Not here

int main(size_t argc ar+ argv[]) {
size_t partitions’= magically_get_P();
size_t my_id = magically_get_id();

size_t N = -1
if (0 == my_id) {
N = atol(argv[i]);

size_t bldck_size = N / partitions;
size_t begiin = block_size * my_id;
size_t end
double h

= 1.0 / (double) N;

for (size_t | = begin; i < end; ++i
pi+= (b *\6.0) / (1.0 + (i * h * i * h));

= block_size * (my_id + 1);

int main(size_:
size_t parti
size_t my_id

size t N
if (0 == my_
N = atol(a

size_t block
size_t begin
size_t end
double h

for (size_t
pi += (b *
if (0 == my_.
std: :cout

}

return 0;

[[TET

81

L
I

AMATH 483/583 High-Performance Scientific Computing Spring 2019

UTIVETSity of Washingtomn by ATdTew Cammsaai

Vs

Finally

Get our id and number
of other nodes

~

This pattern is
ubiquitous

idOgetsN

id shares N

Everyone computes
their own partial

id O collects all partials,
adds them, and prints

NORTHWEST INSTITUTE for ADVANCED COMPUTIN

AMATH 483/583 High-Pel

University of

w

int main(size_t argc, char* argv[]) {

size_t partitions = magically_get_PQ);
= magically_get_id();

%_t my_id

size_t N

+_ if (0 == my_
\N = atol(argv([1])

—

size_t block
size_t begin
size_t end
double h

if (0 == my_

_— pi
std: :cout

}

return O;

}

= _.1;
id) {

_size = N / partitions;

™~ for (size_t i = begin; i < end; ++i)
pi+=(h *4.0) / (1.0 + (i *xh *x1ixh));

id) {

= magically_combine(pi);
" << pi << std::endl;

<< "pi is ~

= magically_share(N);

block_size * my_id;
block_size * (my_id + 1);
1.0 / (double) N;

int main(int argc, char* argv[]) {

MPI Get our id and number size_t intervals = 1024 * 1024;
of other nodes N MPI::Init();

int myrank

idogetsN || W

if (0 == myrank) {

ThIS pattern IS if (argc >= 2) intervals = std::atol(argv[i]);
¥

A N |
u blq u Ito us Id S h ares N [~ wMpI: :COMM_WORLD.Bcast (4¥intervals, 1, MPI::UNSIGNED_LONG, 0);

MPI: :COMM_WORLD.Get_rank() ;
MPI: :COMM_WORLD.Get_size();

size_t blocksize = intervals / mysize;
Y/ size_t begin = blocksize * myrank;

Everyone has same N size_t end - blocksize * (myrank + 1); A
double h = 1.0 / ((double)intervals); Id O IS
double pi = 0.0; root

Everyone computes for (size_t i = begin; i < end; ++i) {

pi += 4.0/ (1.0 + (A * h * i * h));

their own partial

MPI::COMM_WORLD.Reduce (&mypi, &pi, 1, MPI::DOUBLE, MPI::SUM, 0);

if (0 == myrank) {

id 0 co“eCts a” partiaIS, std::cout << "pi is approximately " << pi << std::endl;
adds them, and prints

}

MPI::Finalize();
NORTHWEST INSTITUTE for ADVANCED COMPL

AMATH 483/583 }
Univers|

return 0;

MPI

—The Complete Refer
Volume 1, The MPI Coi Volume 2, The MPI Extens,

second edition

NORTHWEST INSTITUTE for ADVANCED COMPUTING : W

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

Distrib+~- e msaa s Independent Independent
Code is replicated memory space memory space

LLLLLLLLLL LLLLLLLLLLL \
o ——— M [— — —

(¥ [o]
[F] o <astructons)| & [£] o <structons]| &
D] fr2 0 o] [[}
R 3 — R 3 —
a ? Ta — | L2 | | ? Ta — | L2 3
3 | =) & E insiuctons | 3| | = < etractons]
IO e © 3 IO e G) E
= ek = ek
[y | F Iy [- ;
—H mln L1 - — e L L1 =
- % r [0) F Data = % 2 [0) F Data /
| i — |2 = ;| = g E/
£W 3 R} / £W s L1 /
[) "6 D)
T = / 0 =
LU I A B LI I I B B B B

The union of the partitions

Dat titioned
should be the whole problem ata are partitione

ct
TTITOTOUTITToOU! I/

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019

un of
WASHINGTON
University of Washington by Andrew Lumsdaine

Finding Concurrency | int main0 ¢
N/4-1 A double pi = 0.0; int N = 1024%1024;
h I N
; 1+ (02 | [for Gint i = 0; i < N/a; ++i)
pi += (h*4.0) / (1.0 + (ixh*ixh));
N/2-1
hz | I —for (int i = N/4; i < N/2; ++i)
_N/41+(Zh pi += (h*4.0) / (1.0 + (ixh*i*h));
3N/4-1 for (int i = N/2; i < 3xN/4; ++i)
hy T zh)2 | pi += (b*4.0) / (1.0 + (ixh*i*h));
i=N/2
for (int i = 3*N/4; i < N; ++i)
//// pi += (h*4.0) / (1.0 + (i*h*ixh));
hz 1+ 4
i=3N/4 std::cout << "pi T " << pi << std::endl;
return 0;
NORTHWEST INSTITUTE for ADVANCED COM }

82 Ur - J

Processes

[double pi = 0.0;

int main() {

double pi = 0.0; double h = 1./(double) N;

for (size_t i = 0; i < N/4; ++i)

pi+=(h *4.0) / (1.0 + (4 *h *1i *h));

Process

std::cout << "pi is T " << pi << st
Process
int main() {
double pi = 0.0; double h = 1./(double) N; iNt main(int argc, charx* argv []) {

for (size_t i = N/4; i < N/2; ++i)
pi+=(h *4.0) / (1.0 + (4 *h *1i*h));

" << pi << st

std::cout << "pi is ~

/7

Process

int main() {

double pi = 0.0; double h = 1./(double) N;
for (size_t i = N/2; i < 3*N/4; ++i)

pi+= (b *4.0) / (1.0 + (i * h * i = h)); =
pi << st

std::cout << "pi is 7 " <<

int main() {

double pi = 0.0; double h = 1./(double) N;
for (size_t i = 3*N/4; i < N; ++i)

pi += (h * 4.0) / (1.0 + (i *x h x i *x h));
pi << std::endl

std::cout << "pi is T " <<

return 0;

83

Process

AW

return 0;

}

void pi_helper(int begin, int end, double h) {
for (int i = begin; i < end; ++i)
pi += (h*4.0) / (1.0 + (ixh*i*h));

t N = 1024 * 1024; double h = 1.0/ (double)N;

std::cout << "pi is

" << pi << std::endl;

Distinguished Replicated Processes

int main(size_t argc, char* argv[]) {
size_t partitions = magically_get_P();
size_t my_id = magically_get_id();

size t N =-1;
if (0 == my_id) {
N = atol(argv[1l);
i
size_t block_size = N / partitions;
size_t begin = block_size * my_id;
size_t end = block_size * (my_id + 1);
double h = 1.0 / (double) N;

for (size_t i = begin; i < end; ++i)
pi += (h * 4.0) / (1.0 + (4 * h * i * h));

if (0 == my_id) {
std::cout << "pi is ~

}

" << pi << std::endl;

return 0;

int main(size_t argc, char* argv[]) {
size_t partitions = magically_get_P();
size_t my_id = magically_get_id();

size_t N = =il
if (0 == my_id) {

N = atol(argv[i]);
¥
size_t block_size = N / partitions
size_t begin = block_size * my_id;
size_t end = block_size * (my_id + 1);
double h = 1.0 / (double) N;

for (size_t i = begin; i < end; ++i)
pi += (b *x 4.0) / (1.0 + (* h * i * h));

if (0 == my_id) {
std::cout << "pi is "

}

" << pi << std::endl;

return 0;

int main(size_:
size_t parti
size_t my_id

int main(size_t argc, char* argv[]) {
size_t partitions = magically_get_P();
size_t my_id = magically_get_id();

size_t N =-1;
if (0 == my_id) {
N = atol(argv[1]);

size_t N
if (0 == my_
N = atol(a

size_t block_size = N / partitions;

size_t begin = block_size * my_id;
size_t end = block_size * (my_id + 1);
double h = 1.0 / (double) N;

size_t block
size_t begin
size_t end
double h

for (size_t i = begin; i < end; ++i) for (size_t

pi+= (b *4.0) / (1.0 + (i *h * i *h); pi += (b *
if (0 == my_id) { if (0 == my_
std::cout << "pi is " " << pi << std::endl; std: :cout

¥ b3
return 0; return 0;
3

L

N
|

.

L
I

Gz

NORTHWEST INSTITUTE for|ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019

UNIVERSITY of
WASHINGTON

UTIVETSity of Washingtomn by ANdTew tamsaai

int main(int argc, char* argv[]) {

MPI Get our id and number size_t intervals = 1024 * 1024;
of other nodes N MPI::Init();

int myrank

idogetsN || W

if (0 == myrank) {

ThIS pattern IS if (argc >= 2) intervals = std::atol(argv[i]);
¥

A N |
u blq u Ito us Id S h ares N [~ wMpI: :COMM_WORLD.Bcast (4¥intervals, 1, MPI::UNSIGNED_LONG, 0);

MPI: :COMM_WORLD.Get_rank() ;
MPI: :COMM_WORLD.Get_size();

size_t blocksize = intervals / mysize;
Y/ size_t begin = blocksize * myrank;

Everyone has same N size_t end - blocksize * (myrank + 1); A
double h = 1.0 / ((double)intervals); Id O IS
double pi = 0.0; root

Everyone computes for (size_t i = begin; i < end; ++i) {

pi += 4.0/ (1.0 + (A * h * i * h));

their own partial

MPI::COMM_WORLD.Reduce (&mypi, &pi, 1, MPI::DOUBLE, MPI::SUM, 0);

if (0 == myrank) {

id 0 co“eCts a” partiaIS, std::cout << "pi is approximately " << pi << std::endl;
. ¥
adds them, and prints

MPI::Finalize();

NORTHWEST INSTITUTE for ADVANCED COMPL

return 0;

AMATH 483/583 }

8 Univers|

The Message Passing Interface (MPI)

BELENTIVI 7

MPI

—The Complete Refer
Volume 1, The MPI Coi Volume 2, The MPI Extens,

second edition

NORTHWEST INSTITUTE for ADVANCED COMPUTING : W

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

Thank You!

NORTHWEST INSTITUTE for ADVANCED COMPUTING | w

AMATH 483/583 High-Performance Scientific Computing Spring 2019 / SUNIVERSITHor?
University of Washington by Andrew Lumsdaine

Creative Commons BY-NC-SA 4.0 License

S0Ee

© Andrew Lumsdaine, 2017-2018

Except where otherwise noted, this work is licensed under

https://creativecommons.org/licenses/by-nc-sa/4.0/

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

W

UNIVERSITY of
WASHINGTON

88

