NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583
High Performance Scientific Computing

Lecture 13:
Case Studies: TwoNorm, PageRank, Lambda

Andrew Lumsdaine

Northwest Institute for Advanced Computing
Pacific Northwest National Laboratory
University of Washington

Seattle, WA

Questions from Last Time?

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 / UNIVERSYTYof 3
University of Washington by Andrew Lumsdaine |

Parallelization St=otaecu- —
| Decompose problem into pieces

Finding that can execute concurrently
Concurrency \
B
] T~ Manage sharing Z)/;adsali;)r
Algorithm

Structure | Fundamental
! organizing principle \ Around tasks or around

Supporting - - data decomposition or
Structures | Programming paradigms around data flow
3 and data structures
Implementation
Mechanisms | | Manage tasks, move data

NORTHWEST INSTITUTE for ADVANCED COMPUTING

Timothy Mattson, Beverly Sanders, and Berna Massingill. 2004. P4ttéris for Paraifel ProgirammingtFirst ed R Addisshanésley Prof ,

University of Washington by Andrew Lumsdaine

Two Norm Function (Sequential)

double two_norm(const Vector& x) {
double sum = 0.0;
for (size_t i = 0; i < x.num_rows(); ++i) {
sum += x(i) * x(i);
}

return std::sqrt(sum);

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Pacific Northwest
v

nnnnnnnnn f
WASHINGTON

/

/

Partitioned Vector

class PartitionedVector {
public:
PartitionedVector(size_t M) : num_rows_(M), storage_(num_rows_) [{}

double& operator() (size_t i) { return storage_[il;]}
const double& operator()(size_t i) comnst { return storage_[i];

size_t num_rows() const { return num_rows_; }

void partition_by_rows(size_t parts) {
size_t xsize = num_rows_ / parts;
partitions_.resize(parts+1);
std::fill(partitions_.begin()+1, partitions_.end(), xsize);
std: :partial_sum(partitions_.begin(), partitions_.end(), partitions_.begin());

¥
private:

size_t num_rows_;

std: :vector<double> storage_;
public:

std::vector<size_t> partitions_;
B3

NORTHWEST INSTITUTE for ADVANCED COMPUTING ~ W
Pacific Northwest / L

L LASORATORY

AMATH 483/583 High-Performance Scientific Computing Spring 2019 UNIVERSITY of
WASHINGTON
University of Washington by Andrew Lumsdaine

Two Norm v.1

double two_norm_part(const PartitionedVector& x, size_t p) {
double sum = 0.0;
for (size_t i = x.partitions_[pl; i < x.partitions_[p+1]; ++i) {
sum += x(i) * x(i);
}

return sum;

double two_norm_px(const PartitionedVector& x) {
std: :vector<std::future<double>> futures_;
for (size_t p = 0; p < x.partitions_.size()-1; ++p) {
futures_.push_back(std: :async(std::launch::async, two_norm_paxyt, x, p));

}

double sum = 0.0;

for (size_t p = 0; p < x.partitions_.size()-1; ++p) {
sum += futures_[p]l.get();

}

return std::sqrt(sum);

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

W

UNIVERSITY of
WASHINGTON

Pacific Northwest
NATIONAL LASORATORY

Timing

for (size_t num_threads = 1; num_threads <= 8; num_threads*=2) {
x.partition_by_rows (num_threads) ;

DEF_TIMER(two_norm_rx) ;

START_TIMER (two_norm_rx);

for (size_t i = 0; i < trips; ++i) {
b += two_norm_rx(x);

}

STOP_TIMER (two_norm_rx) ;

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 y UNIVERSITY of
WASHINGTON
University of Washington by Andrew Lumsdaine

Results

vl

Time(ms)
g

10!

10°

Num threads

NORTHWEST INSTITUTE for ADVANCED COMPUTING

W

UNIVERSITY of
WASHINGTON

Pacific Northwest
o= RATORY

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

What Happened?

e0e@ Instruments3

° B WE34888) || two_norm.exe < Run8of 8 | 00:00:02 + 39 O

Al Instruments Threads ([

E Core 0
\i\ Core 1 (logical)
@ Core 2
IE Core 3 (logical)

& Details ® N
Total Samp. Running Time v Self (ms) Symbol Name Recording Info
1501 1501.0ms 61.4% 12.0 [] vmain two_norm.exe Target Name: WE34888
xe Target Model: MacBook Pro

1433 1433.0ms 58.6% 0.0 ‘wtwo_norm_px(PartitionedVector const&) t
1114 1114.0ms 45.6% 4.0 invoke_of<std:
1065.0ms

cay<double (8)(PartitionedVe Target macOS: 10.13.6 (1766030)

Start Time: May 14, 2019 at 9:02:50 AM
End Time: May 14, 2019 at 9:02:52 AM

45 45.0ms 1.8% 15.0

;
1 1.0ms 0.0% 1.0 void std::__1: (-

34 340ms 1.3% 2.0 »two_norm_rx(PartitionedVector const&) R e 5

21 21.0ms 0.8% 18.0 »two_norm_(PartitionedVector const&)
1 1.0ms 0.0% 0.0 sic_ostream<char, s Recording Settings

318 318.0ms 13.0% 2.0 thread_proxy<st Target: two_norm.exe

307 307.0ms 12.5% 307.0 thread_proxy<st Recording Mode: Immediate

207 207 Nme 17 1% nn SP—y Time Limit: 12 hours

Input Filter & Call Tree Constraints Data Mining Counters:

Pacific Northwest
NATIONAL L =

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 UNIVERSITY of
. - WASHINGTON
University of Washington by Andrew Lumsdaine

What Happened?

Total Samp... Running Time v Self (ms) Symbol Name
1501 1501.0ms 61.4% 12.0 ¥main two_norm.e
1433 1433.0ms 58.6% 0.0 vtwo_norm_px(PartitionedVector const&) two_norm
1114 1114.0ms 45.6% 4.0 wstd:__1: ::__1::_invoke_of<std::__1::decay<double (&)(PartitionedVe

1065.0ms 43.6% 1065.0 4
45 45.0ms 1.8% 15.0 pstd::__1:future<double> std::__1::__make_async_assoc_state<double, std::__
318 318.0ms 13.0% 318.0 std::__1::_async_assoc_state<double, std::__1::_async_func<double (*)(Partit
1 1.0ms 0.0% 1.0 void std::__1::vector<std::__1:future<double>, std::__1::allocator<std::__1::futt
34 34.0ms 1.3% 2.0 ptwo_norm_rx(PartitionedVector const&) two .
21 21.0ms 0.8% 18.0 ptwo_norm_|(PartitionedVector const&) two_norm.exe
1 1.0ms 0.0% 0.0 pstd::__1::basic_ostream<char, std::__1::char_traits<char> >& std::__1::__put_char
318 318.0ms 13.0% 2.0 pvoid® std::__1::__thread_proxy<std::__1::tuple<std::__1::unique_ptr<std::__1::__thre
307 307.0ms 12.5% 307.0 void* std::__1::__thread_proxy<std::__1::tuple<std::__1::unique_ptrestd::__1::__thre
na7 207 Nme 12 104 nn boanind® otree 1 thraad nravascted. Aotunlazotrds 1onninna ntrectade 1 thra

Input Filter Call Tree Constraints Data Mining

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

e W
e Nortioes

; UNIVERSITY of /

10 WASHINGTON

Two Norm v.2

double two_norm_part(const PartitionedVector& x, size_t p) {
double sum = 0.0;
for (size_t i = x.partitions_[p]; i < x.partitions_[p+1]; ++i) f
sum += x(i) * x(i);
}
return sum;

¥

double two_norm_rx(const PartitionedVector& x) {
std: :vector<std::future<double>> futures_;
for (size_t p = 0; p < x.partitions_.size()-1; ++p) {
futures_.push_back(std: :async(std: :launch: :async, two_norm_pant, std::cref(x), p));

}

double sum = 0.0;

for (size_t p = 0; p < x.partitions_.size()-1; ++p) {
sum += futures_[p].get();

}

return std::sqrt(sum);

W

AMATH 483/583 High-Performance Scientific Computing Spring 2019 [— UNIVERSITY of
WASHINGTON
University of Washington by Andrew Lumsdaine

Results v.2

Time(ms)
g

10!
10°

Num threads

NORTHWEST INSTITUTE for ADVANCED COMPUTING

W

UNIVERSITY of
WASHINGTON

Pacific Northwest
NATIONAL LASORATORY

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Results v.2

10°
£
w0
E
£
\ e
e
10?
10°

Num threads

NORTHWEST INSTITUTE for ADVANCED COMPUTING

e ey e ', ' 4
e Nertives

TORY

AMATH 483/583 High-Performance Scientific Computing Spring 2019 - e UNIVERSITY of
WASHINGTON
University of Washington by Andrew Lumsdaine y

Walkthrough

NORTHWEST INSTITUTE for ADVANCED COMPUTING

W

UNIVERSITY of
WASHINGTON

Pacific Northwest
N RATORY

1 AMATH 483/583 High-Performance Scientific Computing Spring 2019
' University of Washington by Andrew Lumsdaine

Timing all Three Norms

for (size_t num_threads = 1; num_threads <= 8; num_threads *= 2) {
x.partition_by_rows(num_threads) ;

DEF_TIMER (two_norm_px) ;

START_TIMER (two_norm_px) ;

for (size_t i = 0; i < trips; ++i) {
a += two_norm_px(x);

STOP_TIMER (two_norm_px) ;

for (size_t num_threads = 1; num_threads <= 8; num_threads*=2)
x.partition_by_rows(num_threads);

DEF_TIMER (two_norm_rx) ;

START_TIMER (two_norm_rx) ;

for (size_t i = 0; i < trips; ++i) {
b += two_norm_rx(x);

STOP_TIMER (two_norm_rx);

for (size_t num_threads = 1; num_threads <= 8; num_threads*=2)
x.partition_by_rows(num_threads);

DEF_TIMER (two_norm_1); '\ Th ese are a I |

START_TIMER(two_norm_1);
for (size_t i = 0; i < trips; ++i) {

g the same

STOP_TIMER(two_norm_1);

NORTHWEST INSTITUTE for ADVANCED COMPUTING 7 w
Pacifji: Northwest /

AMATH 483/583 High-Performance Scientific Computing Spring 2019 UNIVERSITY of
WASHINGTON
University of Washington by Andrew Lumsdaine /

Functions as Values

We wantto
void benchmark(const PartitionedVector& =x>—f—— pass in

for (size_t num_threads = 1; num_threads <= 8; something 2) {

x.partition_by_rows (num_threads) ;

DEF_TIMER(two_norm_px) ;
START_TIMER(two_norm_px) ;
for (size_t i = 0; 1 < trips; ++i) {

, - just needs an
+= < thing> ;
¥) o lngx\ That we call / operator()()

STOP_TIMER (two_norm_px) like a function /

Double bonus: It

Let’s not get
carried away

\ A A
UNIVERSITY of
WASHINGTON

NORTHWEST INSTITUTE for ADVANCED COMPUTING

s AMATH 483/583 High-Performance Scientific Computing Spring 2019
6
University of Washington by Andrew Lumsdaine

Functions as Values Is a function Parameter f

7

void bench(std::funetiggzaouble (PartitionedVector&)> two_norm_f,
PartitionedVector

orisils @ = O That returns
for (size_t num_threads = 1; num_threads <= 8; n void {

x.partition_by_rows(num_threads);

DEF_TIMER (two_norm_px) ;

START_TIMER(two_norm_px) ;

for (size_t i = 0; i < trips; ++i) {
a += two_norm_f(std::ref(x));

}

STOP_TIMER(two_norm_px) ;

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 y UNIVERSITY of
WASHINGTON
University of Washington by Andrew Lumsdaine /

Two Norm v.2

double two_norm_part(const PartitionedVector& x, size_t p) {
double sum = 0.0;
for (size_t i = x.partitions_[p]; i < x.partitions_[p+1]; ++i) {
sum += x(i) * x(i);
}
return sum;

X

double two_norm_rx(const PartitionedVector& x) {
std: :vector<std::future<double>> futures_;
for (size_t p = 0; p < x.partitions_.size()-1; ++p) {
futures_.push_back(std: :async(std: :launch: :async, two_norm_pant, std::cref(x), p));

}

double sum = 0.0;

for (size_t p = 0; p < x.partitions_.size()-1; ++p) {
sum += futures_[p].get();

}

return std::sqrt(sum);

W

UNIVERSITY of
WASHINGTON

Pacific Northwes:
NATIONAL LASORA

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Launching async()

]

int main(int argc, char* argv[]) {

“Helper function”
(where is it?)

unsigned long intervals = 1024 * 1024;

unsigned long num_blocks = 1;

double h = 1.0 / (double)interv
unsigned long blocksize = intervals / num_bZocks;

std: :vector<std::future<double>>

for (unsigned long k = 0; < num_blocks; ++k

Run right
away

partial_sums.push_k&ack(
std: :async ::launch: :async,
partial_pi, k * blocksize, (k + 1) * blocksize, h));

std::cout << "pi is approximately " << pi << std::endl;

return O;
}
19

for (unsigned long k = 0; k < num_EiSEEEi_iikl————"”——_—_————
pi += h * partial_sums([k].get();

Results will
be here

W

UNIVERSITY of
WASHINGTON

Function
name

Parameter

Iist/

|_{ Return value

S

7
double partial_pi(unsigned long be
double partial_pi = 0.0;
for (unsigned long i = begin; i < end; ++i) {

, unsigned long end, double h) {

partial_pi += 4. i1

¥ Return value |/
return partial_pi;

Function

name l//

Parameters

L*) i i

‘ 7 7
double my_pi = partial_pi(0, 100, .001);

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

20

W

UNIVERSITY of
WASHINGTON

Named functions

double partial_pi(unsigned long begin, unsi ~—double h) {

double partial_pi = 0.0; But what is

for (unsigned long i = begin; i < end; this rea||y?

partial_pi += 4.0 / (1.0 + (i*h*xi*));

}

return partial_pi;
i Function |

— % Parameters
name /]

partial_sums ush_back;ﬁ///
std: :asymc(std: :laungh: :async,

partial_pi, k * blocksize, (k + 1) * blocksize, h));

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Named variables

Variable Variable
namy’ value Value will be
looked up
) - / Call with
double pi = 3.14;/ variable name [\ Angg":eﬁ”

N\ sqrt wi
double sqrtpi_1 = sqrt583(pi); be called
double sqrtpi_2 = sqrt583(3.14_)_;\ Call with

. all wi . -
value — | Function will
\ be called with
same thing as
before

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Pacific Northwest
= | universiTy o

/

/

Named funCtiorﬁ Fl:]r;cr;c]lgn Can | call std::async

. . R
double partial_pﬂﬁsigned long begin, unsigned long end dlreCtly Wlth the,
double partial_pi = 0.0; value of partial_pi

for (unsigned long i = begin; i < end; ++i) {
partial_pi += 4.0 / (1.0 + (i*h*ix*h));

ietum partial_pi; Value will be (ves)
o | looked u
’ Call with P J
4 function name And then
partial_sums.pwSh_back(std::async will
std::asyng{std: :launch: :async, be called

partial_pi, k * blocksize, (k + 1) * blocksize, h));

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Sciel puting Spring 2019 y oy
University of Washington by Andrew Lumsdaine /

Name this famous person

Alonzo Church (June 14, 1903 — August 11, 1995)
was an American mathematician and logician who
made major contributions to mathematical logic
and the foundations of theoretical computer
science. He is best known for the lambda
calculus, Church—Turing thesis, proving the
undecidability of the Entscheidungsproblem,
Fre%i—Church ontology, and the Church—Rosser

Vari theoxem.
ar.|ous Alan Turing
formallsm.s for Gottlog Frege
computing John Barkley

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Rosser

nnnnnnnnn f
WASHINGTON

Lambda: Anonymous functions

int main(int argc, char* argv[]) {

unsigned long intervals = 1024 * 1024;
unsigned long num_blocks = 1;
double h = 1.0 / (double)intervals;

unsigned long blocksize = intervals / num_blocks;
std: :vector<std::future<double>> partial_sums;

for (unsigned long k = 0; k < num_blocks; ++k) {
partial_sums.push_back(std::async(std::launch::async, [&]() -> double {
double partial_pi = 0.0;
for (unsigned long i = k * blocksize; i < (k + 1) * blocksize; ++i) {
partial pi += 4.0 / (1.0 + (i * h * i * h));
}
return partial_pi;
)
}

double pi = 0.0;

for (unsigned long k = 0; k < num_blocks; ++k) {
pi += h * partial_sums[k].get();

}

std::cout << "pi is approximately " << std::setprecision(15) << pi << std::endl;

return 0; V/ w
Y e T des * -

- UNIVERSITY of
25 - WASHINGTON

Lambda: Anonymous functions

for (size_t k = 0; k < num_blocks; ++k) {
partial_sums.push_back
(std::async(std: :launch: :async,
[1(size_t begin, size_t end, double h) ->_double

{
double partial_pi = 0.0;
for (size_t i = begin; i < end; ++i) { Value of

tial_pi += 4.0 / (1.0 + (i*h*ixh)); | . :

. partial_pi / ((i*h*i*h)) partlal_pl
return partial_pi;

} —

)

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

W

UNIVERSITY of
WASHINGTON

Pacific Northwest
NATIONAL LASORATORY

Two Norm v.3 Used to be

two_norm_part

double two_norm_l(const PartitionedVector& x) {
std: :vector<std::future<double>> futures_;
for (size_t p = 0; p < x.partitions_.size(
futures_.emplace_back(std: :async(std ~
double sum = 0.0;

for (size_t i = x.partitions_[p]; i < x.partitiomns_[p+1];¢i) {
sum += x(i) * x(i); N

}
return sum;

}op)); lambda
}

; t+p) o
aunch: :async, [&](sizelt p) {

double sum = 0.0;

for (size_t p = 0; p < x.partitions_.size()-1; ++p) {
sum += futures_[p].get();

¥

return std::sqrt(sum);

AMATH 483/583 High-Performance Scientific Computing Spring 2019 | UNIVERSITY of
WASHINGTON
University of Washington by Andrew Lumsdaine /

Before

double partial_pi(size_t begin, size_t end, double h)
{
double partial_pi = 0.0;
for (size_t i = begin; i < end; ++i) {
partial_pi += 4.0 / (1.0 + (i*hx*ix*h));
}

return partial_pi;

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

W

UNIVERSITY of
WASHINGTON

Pacific Northwest
v

After

auto partial_pi(size_t begin, size_t end, double h) -> double
{
double partial_pi = 0.0;
for (size_t i = begin; i < end; ++i) {
partial_pi += 4.0 / (1.0 + (i*hx*ix*h));
}
return partial_pi;

}

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Before

W

UNIVERSITY of
WASHINGTON

auto partial_pi(size_t begin, size_t end, double h) -> double
{
double partial_pi = 0.0;
for (size_t i = begin; i < end; ++i) {
partial_pi += 4.0 / (1.0 + (i*hx*ix*h));
}
return partial_pi;

}

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

After

auto partial_pi = [J(size_t begin, size_t end, double h) -> double
{
double partial_pi = 0.0;
for (size_t i = begin; i < end; ++i) {
partial_pi += 4.0 / (1.0 + (i*hx*ix*h));
}
return partial_pi;

};

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Function values Lambda” (this Function
is a function
parameters
value)
Z p

auto partial_pi = [I(size_t begin, sie/_t end, double h) -> double

{
double partial_pi = 0.0;

for (size_t i = begin; i < end; ++i) {
partial_pi += 4.0 / (1.0 + (i*hx*ix*h));

Return type

}
return partial_pi; | \
s

Return value

What is the
value of
partial_pi?

=
Pacific Northwest
v

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

¥ e | _unNivERsITY o f
y WASHINGTON

/

Before

(std: :async(std: :launch: :async,
partial_pi,

k * blocksize, (k + 1) * blocksize, h

.

));

NORTHWEST INSTITUTE for ADVANCED COMPUTING A \z/ / w

AMATH 483/583 High-Performance Scientific Computing Spring 2019 y UNIVERSITY of
WASHINGTON
University of Washington by Andrew Lumsdaine

After

(std: :async(std: :launch: :async,
[1(size_t begin, size_t end, double h) -> double
{
double partial_pi = 0.0;
for (size_t i = begin; i < end; ++i) {
partial_pi += 4.0 / (1.0 + (ix*hx*ixh));
}
return partial_pi;
}, k * blocksize, (k + 1) * blocksize, h
)5

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

Before

(std: :async(std: :launch: :async,
partial_pi,

B —

Function name

k * blocksize, (k + 1) * blocksize, h
));

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 y UNIVERSITY of
WASHINGTON
University of Washington by Andrew Lumsdaine /

After

_~ Function value

(std::async(std: :launch: :async,
[]1(size_t begin, size_t end, double h) -> double

{
async “sees” the double partial_pi = 0.0;
same thing for (size_t i = begin; i < end; ++i) {
partial_pi += 4.0 / (1.0 + (i*h*i*h));
}

return partial_pi;
}, k * blocksize, (k + 1) * blocksize, h
));

NORTHWEST INSTITUTE for ADVANCED COMPUTING

W

UNIVERSITY of
WASHINGTON

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

A" together int main(int argc, ch?rzozzgz[ll()ui

size_t intervals =

size_t num_blocks = 1;
double h = 1.0 / (double)intervals;
size_t blocksize = intervals / num_blocks;

std::vector<std::future<double>> partial_sums;

for (size_t k = 0; k < num_blocks; ++k) {
partial_sums.push_back
(std: :async(std: :launch: :async,

[1(size_t begin, size_t end, double h) -> double

{
double partial_pi = 0.0;
for (size_t i = begin; i < end; ++i) {

partial_pi += 4.0 / (1.0 + (ixh*i*h));

return partial_pi;
, k * blocksize, (k + 1) * blocksize, h
)
¥

double pi = 0.0;
for (size_t k = 0; k < num_blocks; ++k) {
pi += h * partial_sums[k].get();
}
std::cout << "pi is approximately " << std::setprecision(15) <<
— pi << std::endl;

return 0;

} unIvERSITY of
37 WASHINGTON

All together zoomed

size_t intervals = 1024 * 1024;
size_t num_blocks = 1;
double h = 1.0 / (double)intervals;
size_t blocksize = intervals / num_blocks;
std: :vector<std::future<double>> partial_sums;
Function

for (size_t k = 0; k < num_blocks; ++k) {

partial_s .push_back / para meters

(std:: nc(std: :launch: :async,
[1(size_t begin, size_t end, double h) -> double

{

1

P nble partial_pi = 0.0;
Why cantwe | (size t i = begin; i < end; ++i) { p d
use k. blocksize partial_pi += 4.0 / (1.0 + (i*h*i*h)); asse
7 7

. parameters
and h dlrECtly? burn partial_pi; /

, k * blocksize, (k + 1) * blocksize, h

) . | W

UNIVERSITY of
38 WASHINGTON

Capture

for (size_t i = kkblocksize; 1 < (k+l)*blocksize; ++i) {

for (size_t k = 0; k < num_blocks; ++k) {

size_t intervals = 1024 * 1024; (0 douste

size_t num_blocks = 1; for (sizeLt § = keblaskeize; § < (kut)bloskedze; +0) €
double h = 1,0 / (Cloulsjptmeime s Mg it

size_t blocksize = intervals / num_bl . B e

for (size_t i = kkblocksize; i < (k+l)sblocksize; ++i) {

std: :vector<std::future<double>> partia i i il
[10) -> double
for (size_t k = 0; k < num_blocks; ++k)’
partial_sums.push_back
(std::async(std: :launch: :async,
[1O -> double
{

for (size_t i = kiblocksizej i < (kei)sblocksize; ++i) {
size_t blocksize = intervals / nun_blocks;
10 > double
partialpi += 4.8 / (1.0 + (iheixn));

double h = 1.8 / (double)intervals;

double partial_pi = O
for (size_t i = kxblo
partial_pi += 4.0 /

[10 -> double
partial pi += 4.8 / (1.8 + (ixhxixh));

double h = 1.8 / (double)intervals;

[10) -> double

return partial_pi; ¢ errors generatad,

)); "4

39 HINGTON

Before

size_t intervals = 1024 * 1024;

size_t num_blocks = 1;

double h = 1.0 / (double)intervals;
size_t blocksize = intervals / num_blocks;

std::vector<std::future<double>> partial_sums;

for (size_t k = 0; k < num_blocks; ++k) {
partial_sums.push_back
(std: :async(std: :launch: :async,

[1O -> double

{
double partial_pi = 0.0;
for (size_t i = kxblocksize; i < (k+1)*blocksize; ++i) {

partial_pi += 4.0 / (1.0 + (i*hxi*h));

}

return partial_pi;

W

UNIVERSITY of
WASHINGTON

Pacific Northwest
o= ey

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

After

size_t intervals = 1024 * 1024;

size_t num_blocks = 1;

double h = 1.0 / (double)intervals;
size_t blocksize = intervals / num_blocks;

std::vector<std::future<double>> partial_sums;

for (size_t k = 0; k < num_blocks; ++k) {
partial_sums.push_back
(std: :async(std: :launch: :async,
[&] () -> double

{
double partial_pi = 0.0;
for (size_t i = kxblocksize; i < (k+1)*blocksize; ++i) {
partial pi += 4.0 / (1.0 + (i*hxi*h));
}
return partial_pi;
}
));

NORTHWEST INSTITUTE for ADVANCED COMPUTING T W

AMATH 483/583 High-Performance Scientific Computing Spring 2019 y . UNIVERSITY of
WASHINGTON
University of Washington by Andrew Lumsdaine /

After after

size_t intervals = 1024 * 1024;

size_t num_blocks = 1;

double h = 1.0 / (double)intervals;
size_t blocksize = intervals / num_blocks;

std::vector<std::future<double>> partial_sums;

for (size_t k = 0; k < num_blocks; ++k) {
partial_sums.push_back
(std: :async(std: :launch: :async,

[=1() -> double

{
double partial_pi = 0.0;
for (size_t i = kxblocksize; i < (k+1)*blocksize; ++i) {

partial_pi += 4.0 / (1.0 + (i*hxi*h));

}

return partial_pi;

}
));

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

W

UNIVERSITY of
WASHINGTON

Pacific Northwest
NATIONAL LASORATORY

After after after

size_t intervals = 1024 * 1024;

size_t num_blocks = 1;

double h = 1.0 / (double)intervals;
size_t blocksize = intervals / num_blocks;

std::vector<std::future<double>> partial_sums;

for (size_t k = 0; k < num_blocks; ++k) {
partial_sums.push_back
(std: :async(std: :launch: :async,

[k, blocksize, &h] () -> double

{
double partial_pi = 0.0;
for (size_t i = kxblocksize; i < (k+1)*blocksize; ++i) {

partial pi += 4.0 / (1.0 + (i*hxi*h));

}

return partial_pi;

}
));

NORTHWEST INSTITUTE for ADVANCED COMPUTING “*x/ w
R e / b
AMATH 483/583 High-Performance Scientific Computing Spring 2019 ; - S SUNIVERSITHor?
University of Washington by Andrew Lumsdaine /

Capture all by reference

size_t intervals = 1024 * 1024;

size_t num_blocks = 1;

double h = 1.0 / (double)intervals;
size_t blocksize = intervals / num_blocks;

std: :vector<std: :future<doub

Capture all
by reference

for (size_t k = 0; k < num_
partial_sums.push_bac

(std: :async(std »Taunch
[& () -> doubre
{

double partial_pi = 0.0;

for (size_t i = kxblocksize; i < (k+1)*blocksize; ++i) {
partial_pi += 4.0 / (1.0 + (i*hxi*h));

¥

return partial_pi;

}
));

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

W

UNIVERSITY of
o WASHINGTON

Pacific Northwest
N RATORY

Capture all by value

size_t intervals = 1024 * 1024;
size_t num_blocks = 1;
double h = 1.0 / (double)intervals;
size_t blocksize = intervals / num_blocks;
std: :vector<std: :future<doub
for (size_t k = 0; k < num_ Capture a“

partial_sums.push_bac by Value

(std: :async(std »Taunch
[= () -> doubre

{
double partial_pi = 0.0;
for (size_t i = kxblocksize; i < (k+1)*blocksize; ++i) {
partial pi += 4.0 / (1.0 + (i*hxi*h));
¥

return partial_pi;

}
));

NORTHWEST INSTITUTE for ADVANCED COMPUTING “*x/ w
R e / b
AMATH 483/583 High-Performance Scientific Computing Spring 2019 ; - S SUNIVERSITHor?
University of Washington by Andrew Lumsdaine /

Capture some by value, some by reference

size_t intervals = 1024 * 1024;

size_t num_blocks = 1;

double h = 1.0 / (double)intervals;
size_t blocksize = intervals / num_blocks;

std: :vector<std: :future<doub

Pick and

for (size_t k = 0; k < num_

partial_sums.push_bac c h oose
(std: :async(std »Taunch

[k, blOCkSia,, T/ Toupre

{
double partial_pi = 0.0;
for (size_t i = kxblocksize; i < (k+1)*blocksize; ++i) {

partial_pi += 4.0 / (1.0 + (i*hxi*h));

}
return partial_pi;

));

W

UNIVERSITY of
WASHINGTON

Pacific Northwest
N RATORY

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Who Wants to be a Billionaire? [l

US006285999B1

(I 3
s a2 United States Patent (10) Patent No.: US 6,285,999 B1
a» United States Patent o Patent No: US 6.2§5,999’ B1
Page 0 Dt of Poents " Sep. 4, 2001 Page @s) Date of Patent: Sep. 4, 2001
(54) METHOD FOR NODE RANKING IN A Craig Boyle “To link or not to link: An empirical comparison
LINKED DATABASE of Hypertext linking strategies”. ACM 1992, pp. 221-231.*

L. Katz, “A new status index derived from sociometric

(75) Inventor: Lawrence Page, Stanford, CA (US) analysis.” 1953, Psychometricka, vol. 18, pp. 39-43.

(73) Assignee: The Board of Trustees of the Leland C.H._ Huhhc_ll, “An inputf)utpul approach to clique identi-
Stanford Junior University, Stanford, fication sociometry,” 1965, pp. 377-399.
CA (US) Mizruchi et al., “Techniques for disaggregating centrality

scores in social networks,” 1996, Sociological Methodology,
(*) Notice: Subject to any disclaimer, the term of this pp. 26-48.
patent is extended or adjusted under 35 E. Garfield, “Citation analysis as a tool in journal evalua-
US.C. 154(b) by 0 days. tion,” 1972, Science, vol. 178, pp. 471-479.

Pinski et al., “Citation influence for journal aggregates of

(21) Appl. No.: 09/004,527 scientific publications: Theory, with application to the lit-

(22) Tiled: Jan. 9, 1998 erature of physics,” 1976, Inf. Proc. And Management, vol.
12, pp. 297-312.
Related U.S. Application Data N. Geller, “On the citation influence methodology of Pinski
(60) Provisional application No. 60/035,205, filed on Jan. 10, and Narin,” 1978, Inf. Proc. And Management, vol. 14, pp.
1997.
93-95.

(1) Int.CL7 .
(52) US.CL ..
(58) Field of Search

- GO6F 17/30 P. Doreian, “Measuring the relative standing of disciplinary
707/5; 707/7; 707/501 journals,” 1988, Inf. Proc. And Management, vol. 24, pp.
.. 707/100, 5, 7, 45-56.

NORTHWEST INSTITUTE for ADVANCED COMPUTING ~ W
Pacific Northwest / .

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : UNIVERSITY of
WASHINGTON
University of Washington by Andrew Lumsdaine

Ranking Web Pages with PageRank
Model as /

UNIVERSITY of

AMATH 483/583 High-Performance Scientific Computing Spring 2019 SUNIVERSITHor?

University of Washington by Andrew Lumsdaine

Ranking Web Pages with PageRank

ic Northwest / w

AMATH 483/583 High-Performance Scientific Computing Spring 2019] UNIVERSITY of |
. / WASHINGTON |
University of Washington by Andrew Lumsdaine |

Surfing: Random Walk on the Web Graph

A
Or this
link
With equal

probability

Might click A surfer
this link here

Or this 7
NORTHWEST INSTITUTE for ADVANCED CC ||nk ' ‘
5 ific Computing Spring 2019 y UNIVERSITY of |

- WASHINGTON /
University of Washington by Andrew Lumsdaine 5’

Surfing: Random Walk on the Web Graph

Modified random

—| walkincludes

“teleportation”

If we do this for
a long time

PageRank: Order
vertices by
importance

“Important”
vertex (site)

Some vertices (sites)
will be visited more

often than others
NORTHWEST INSTITUTE jor ADVANLED CUNMFU TIING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 y oy
University of Washington by Andrew Lumsdaine /

Vector Representation Stochastic
— — (column) vector
Probability that Probability that] / for node i
user will follow user will follow 0
link from i to k link from i to k :)
0 Entry at row j for
/ pii +— edge fromi
0
' Pji + pri =1 :
- O Ent t k
. ‘ ntry at row
Stochasticity p(l)cz for edge from |
Graph of 0
links i i

NORTHWE.NSTITUTEfar ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Pacific Northwest
NATIONAL LASORATORY
oneetaseRrO [UNIVERSITY o f

ot WASHINGTON

Matrix Vector | nodeo | Node2 Probability that
(1) T 247 user will follow
2 0 link from i to k
2 2 3 0 [
1 " 1 7
1/2 -0 -2 - (1) 0 (1)
| Node 1 Node 3 2 U0 3
<:>—> . - 110 2
0T 077 2 2
1
1/2 2 0 3 L0 0 0
1 5 -
1/2 2 Put vectors
| 0 L 0 1 | together into 2P =1V

a matrix

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 ; [UNivERsiTY o
University of Washington by Andrew Lumsdaine

Random Walk / Markov Process «is an
Probability eigenvector of P
@ — | userisatO What e th AN
atis the
N~ _
o 20\ Probability eigenvalue? L = Pﬂj

Po2 user moves

from O to 2 pii =1 Vy
@—> ZL:]

\$2 = P20 + P21T1 + P23T3

Probability L
_ g x; =1
useris at 2 -

J

Li = E Pijj
J

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : . [uNiversiTy
University of Washington by Andrew Lumsdaine (1= —

Some Facts

* Exploit Zpij =1 Vi and consider left eigenvalues (which are
same as right eigenvalues

* By Gershgorin, all (left) eigenvalues are in or on a circle of radius 1
* That s, spectral radius is equal to unity

* By Perron-Frobenius, there is a unique eigenvalue at the spectral
radius (there is unique eigenvalue equal to unity)

« Conclusion, there is an x that satisfies T — PCI}

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performay
University of Washington by Andrew Lumsdaine

ot /| UNIVERSITY o of
g Spring 2019 : WASHINGTON

Computing Solution Let
- Let T = Px z = lim P*y
k— o0
Then
+ Claim » = lim Pky
lim PPy =7 foranyy oo
k—o0 = klim PPky
— 00

But T is |= P lim Py

So: 7= - uniqve [~

=Pz = z=Pz

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performan
University of Washington by Andrew Lumsdaine

S & /| UNIVERSITY o
ce Scientific Computing Spring 2019 : i SUNIVERSITHor?

Computing Solution | Matrix-matrix Matrix-vector

product (k of them) product (k of them)
lim Py =z for an kYp =
et yy (P¥)x = P(P(P...(Px)))
Vector x(N); \\\\\\
Expensive! randomize (x) ; Much
x = (1.0 / one_norm(x)) * x; cheaper!

for (size_t i = 0; i < max_iters; ++i) {
Vector y = P * x;
if (two_norm(x - y) < tol) {
return y;

}
X

=y;

NORTHWEST INSTITL

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Teleportation

Once we get into

this cycle we ™~ K~

can’t get out

_~"| PageRank includes
“teleportation”

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Pacific Northwest
v

‘/ uuuuuuuuuuu

/

Teleportation Small probability

that user might go

Include / from a site to any
teleportation other site

computationally B 1

—_
—_ =
—

o e
gW¢zz | T
1 1 ... 1
Scale to maintain . -
Markov chain

Sum of all elements
in column is equal
to unity

properties

NORTHWEST INSTITUTE for ADV»#

AMATH 483/583 High-Performance Scientific Computing Spring 2019 i emoeivses | UNIVERSITY "
WASHINGTON
University of Washington by Andrew Lumsdaine /

Simplifying Teleportation

1 1 1 E4R: 1
1 1 1 1 1 E4R: 1 1
Ny | i 2 i 7 I
11 L | |z |1 1]

N 1 Small bias

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

nnnnnnnnn f
WASHINGTON

Algorithm with Teleportatio

n

Vector x(N);
randomize (x) ;
x = (1.0 / one_norm(x)) * x;

if (two_norm(x - y) < tol)
return y;

}

X = ;

3

Teleportation

bias

for (size_t i = 0; i < max_iters; ++i) { ////
Vector y = (1.0 - alpha) * P * x + alpha / x.num_rows();

{

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Parallelization St=atoen:

Decompose problem into pieces

Mechanisms

——| Manage tasks, move data

. . /
Finding that can execute concurrently
Concurrency
\ . \ By task or
1# Manage sharing
by data

Algorithm
Structure | Fundamental

! organizing principle \ Around tasks or around
Supporting - - data decomposition or
Structures | Programming paradigms around data flow

3 and data structures

Implementation

NORTHWEST INSTITUTE for ADVANCED COMPUTING
Timothy Mattson, Beverly Sanders, and Berna Massingill. 2004. P4ttérns for Paraitél Progiramn

University of Washington

OfFifst Gy AdhaRestey Profef
by Andrew Lumsdaine /

Pacific Northwest
v

nnnnnnnnn f
WASHINGTON

Walkthrough

NORTHWEST INSTITUTE for ADVANCED COMPUTING ~ W
Pacif,ji:_Northwgst)

ATORY

AMATH 483/583 High-Performance Scientific Computing Spring 2019 5 : o UNIVERSITY of
WASHINGTON
University of Washington by Andrew Lumsdaine /

Thank you!

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

W

UNIVERSITY of
WASHINGTON

Pacific Northwest
N RATORY

Creative Commons BY-NC-SA 4.0 License

S0Ee

© Andrew Lumsdaine, 2017-2019

Except where otherwise noted, this work is licensed under

https://creativecommons.org/licenses/by-nc-sa/4.0/

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

