NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583
High Performance Scientific Computing

Lecture 11:
Threads, Shared Memory Parallelism

Andrew Lumsdaine

Northwest Institute for Advanced Computing
Pacific Northwest National Laboratory
University of Washington

Seattle, WA

Announcements

« Mid Term out this evening (2019-05-07) due 11:59PM 2019-05-14
« Guest lecturer 2019-05-09

* “Pop quiz” next week 2019-05-14 or 2019-05-16
— (Extra credit only)

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : P — . UN;‘[’_IEIR;'T]Y“&
University of Washington by Andrew Lumsdaine ! el b

Overview

Multiple cores

Processes / threads as resource / computation abstraction
Parallelization strategies for multiple computations
Correctness

Performance

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performan
University of Washington by Andrew Lumsdaine

Pacific Northwest
NATIONAL LABORATORY

ce Scientific Computing Spring 2019 . > /' UNIVERSITY,
PUtng =pring 2 e T2, Pt of By WASHINGTON

Anyone in HPC must
know Flynn’s taxonomy

« Classiciassification of parallel architectures (Michael Flynn, 1966)

Flynn’s Taxonomy (Aside

Plain old

Single Instruction Multiple Instruction K K
Instruction . | Instruction
. T~ Storage - Unit
sequential | ¢
S SISD ¢
g Operand » Execution
Storage |e—] Unit
I
©
a Instruction Instruction Instruction Instruction
2 SIMD MIMD Storage Storage Storage Storage
v v v v
Instruction Instruction Instruction Instruction
Unit Unit Unit Unit
Based on multiplicity
\ 4 \ 4 \ 4 \ 4
1 1 Data .| Execution .| Execution .| Execution Execution
Of InStrUCtlon Storage Unit g Unit g Unit Unit
streams, data storage 5
-

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

SIMD and MIMD

« Two principal parallel computing paradigms (multiple ¢

i Shared Memory

5

But each have

for ADVANCED COMPUT

AMATH 483/583 High

Not Shared

Pacific Northwest
NATIONAL LABORATORY

University Cr=rrersrrrrerormy=rrrererr—crr

Proodly Operated by Baese
for the LS. Department of Enen

Single instruction g Oporn their own data
at a time \ l l l l
CEE - All execution
Multiple e T ! ! ! N units execute in
instruction \ (c)lock step
EUS run Instruction . | Instruction Instruction] Instruction Instruction] Instruction
Sterage ' Unit Storage Unit Storage Unit -
independently I I I —| Coming
(wown instrs) | | Tomd [1% | | Tome 1% | | Tome [%o | [_up next
v 4 v 4 v 4

W

UNIVERSITY of
WASHINGTON

A More Refined (Programmer-Oriented) Taxonomy

* Three major modes: SIMD, Shared Memory, Distributed Memory

 Different programming approaches are generally associated with
different modes of parallelism (threads for shared, MPI for distributed)

A modern supercomputer will have all three major modes present

PATTERNS Parallel Clomputers |
pa | | i
ROG /\M M l NG SIMD MIMD grg;jierrfhﬁground/Paral elH
bl | |

Shared Memory

Distributed Memory

T) . =~z .

llllllllllllllllllll -
Pacific Northwest
NATIONAL LABORATORY

IIIIIIIIIII

AMATH 483/583 High-Performance Scientific Computing Spring 2019 ‘,"1 P ——
University of Washington by Andrew Lumsdaine | S D —

Multicore Architecture _
Any CPU in the

Coreisa g e last 4-5 years
N
FDREW +regs| |[¥ o7 Feen [pd
F r1 /< Instructions_ | ()
) | | D
Each runsits —{{gr] L? L2
r3
own sequence |_| | [E| b | Feteh [
. . — W — 2
of instructions | | 57 [15 | Loadstore S E =
i jF 0 Fetch L1 E D1
Each can access | 4] [@ () m “‘m D2
. R Load/Store
its own data R Tz\ L2 |
FEIR G
—»| |e I r5 Load/Store
| /
OR VSN Each has memory Bl might be shared !

.
7 AVATI hierarchy ' " pnvERSITY of

Process Abstraction Stored in Process

/ Control Block (PCB

Set of information Process management Memory management File management
! Registers Pointer to text segment Root directory
about process Program counter Pointer to data segment Working directory
Program status wo Pointer to stack segment | File descriptors
resources Stack pointer User ID
Process state Group ID
Sufficient to be able | | oo
~] Scheduling parameters What does program
to start a process E;ﬁgifspr'g’cess counter represent?
after stopped Process group
Signals
. Time when process started
Also for accounting / CPU time used
2dministrative "t Children’s CPU time
Time of next alarm
purposes

NORTHWEST INSTITUTE for ADVANCED COMPUTING

a AT | o7
igh- ientifi i i ERSITY o
AMATH 483/5.83 ngh Performance Scientific Computmg Spring 2019 : Pty Ot e U:é\ll-lFlRNg’lYO{\l
University of Washington by Andrew Lumsdaine)

Process Lifetime Interrupt or Scheduler
Can have many system call dispatch

many processes
running “at the
same time (

exit

Admitted

Terminated

/O or event |/O or wait
completion event

NORTHWEST INSTITUTE for ADVANCED COMPUTING

) NATY ATORY / 2
AMATH 483/583 High-Performance Scientific Computing Spring 2019 / L5 . UNIVERSITY of
University of Washington by Andrew Lumsdaine / preet s ASEINCION

Context Switch

PO and P1
are running
processes

1

What does
this mean?

And this?

PCB = Process
Control Block

L
| wormiwes i

/

\

v

lexecuting l

L—" process P, operating system process P,

interrupt or system call

External
to OS

OS does
not do this

0 save state into PCB, \\
>idle
reload state from PCB, 1
. |
[ridle interrupt or systemcall — || executing
| \ i -
save state into PCB;
. > id
\\ ° ///IE’
J reload state from PCB,, o
\ Silberschatz, Galvin, Gagne

External
to OS

__ Expensive!

W

UNIVERSITY o) of
WASHINGTON

ow Do We Run Mul

* W

Grab File Edit Capture Window Help

10 loe O

2@OE O B2 WA) Wedl0:48PM L

tiple Programs Concurrently?

Andrew Q

Insert Design Transitions Animatio 4

B o-J j
Insert Design Tra
X, cut

plazza G fo)
Copy * (B tectures_week1 homewor

Default Section (1] pagie

m Q Searchara
U#EOvee @S

© Matrixs.opt05 | @ cpuids | @ cpuinfocpp | @ Matrixcpp [© 17
¥

New
<% Format Slide

| void hoistedMultiply(const Matrix& A, const Matrixd8, Matrix®C) {
for (int i = 0; i < A.numRows(); ++1) {
for (int j = 0; j < B.numColsQ); ++3) {
| double t = C(i,3);
for (int k = 0; k < A.numCols(); ++k) {
t 4= ACLLKD * BCK,5);

WL =t
¥

| void tiledMultiply2x2(const Matrixk A, const Matrix&B, Matrix&C) {
for (int i = 0; i < A.numRowsQ); i += 2) {
i} for (int j = @; j < B.numColsQ; j += 2) §
for (int k = @; k < A.numCols(); ++k {
Ci , j) +=AG , k) *Bk, j)5
CCi , j+1) += AGL , k) * B(k, 3+1);
C(i+l, j) += ACi+l, k) * BCk, §)5
= CCitl, 3+41) += A+, KD * Bk, 3+1D;
}

void tiledMultiply2xd(const Matrix& A, const Matrixg8, MatrixdC) {
for (int i = 0; i < A.numRowsQ); i += 2) {

- for (int j = 0; j < B.numCols(); j += 4 {
for (int k = 0; k < A.nunCols(); ++) {
€ , 3) +=AG , k) *BCk, j)3
CCGi, 341D += AGL , KD * Bk, 3+1D;
CCGi, 342 += AGL , KD * Bk, 3+2);
= CCi, 343) += AGL , KD * B(k, 3+3);
CCisl, §) += AGi+1, k) * BCk, § O3
CCivl, 341D += AGi+1, KD * Bk, 3+1D;
CCivl, 342D += AGi+1, KD * Bk, 342D}
CCi+l, 343) += ACi+1, KD * Bk, 3+3);

void tiledMultiply4x2(const Matrix& A, const Matrix&B, Matrix&() {
for (int i = @; i < A.numRows(); i += 4)
for (int j = 0; j < B.numColsQ); j += 2) {
for Cint k = 0; k < A.numCols(); ++k) {
CGi , 3 d+=AG , k) *BCk, j);
i, 341 += AG , k) * BCk, j+1);

CCitl. i) 4= ACGi+1. k) * B(k. 5)
-:i--- Matrixcpp 7% (70,5) Git-master (C++/I WordWrap Abbrev) Wed Apr 19 10:48PM 1.93

11

| Matrbxs.05 | € ama) negsoneatsn

<) douglas adams

gle douglas adams Q

Al Books News Images Videos More Seftings Tools

0O« W)

cd ..
1ums6580WE31821=> cp L7/L7.pptx L8
1ums658QWE3182:
1ums6580WE31821=> mv L7.pptx LB.pptx
1ums658QWE31821=> open L8.pptx
1ums658QWE3L821=> 15
L8.pptx
1ums658@WE31821=:

git add L8.pptx
1ums658@WE31821=> [| L3

ANAT % 55005 Hign-rerormance SCIENTUTC LOMpuung dpring 2u 1y
University of Washington by Andrew Lumsdaine

¢

of

Fmore

14

\eople

ing
20ls.

F more

UNIVERSITY of
WASHINGTON

Multitasking

Tasks can be
scheduled round

robin (time slicedy”

Concurrency!

/ Time

/ \ S0

>

Run to context

. } etch 1
switch (system 3| [Feon [|E i2
call or interrupt) | el 8 F 9
- — ‘EE’ D1
Clock . Execyte I — “ Do
e LML -] R Write B Load/Store
> e TTTTTTTT]

AMATH 483/583 High-Performance Scientific Computing Spring 2019 Y| _universiTYo
University of Washington by Andrew Lumsdaine S

Multitasking on Multicore
Concurrency!

Time sliced A single threaded /

and mapped to| | task can only use
LTt

separate cores one core at a time K3 _ reon [
/ % r1 | <Instructions m
? r2 L2
HEEREEEN \ "B ; B [
_] __IV! 5 Load/Store ©)) L :2
] 3| =
4 ¥ o Feton || — D1
7 % P Lo [Load/Store
1 Clock L 3
Tlme o LTI - E rd L1
> > |e W 5 Load/Store D)
L T
cycle

f A ATORY 2
R ! UNIVERSITY of
AMATH 483/583 ngh Pen‘ormance Scientific Computmg Spring 2019 s Sl el /
University of Washington by Andrew Lumsdaine |

Multitasking on Multicore |, i What about L1, L2?

: : : / Shorter And L3 cache
Time sliced A multithreaded task ,
. run time!
and mapped to can use multiple Threads can
. LIttt
separate cores cores at a time Fgd e ralmm share memory
e r0 . L1
/ \ / F 1 <lInstructions (n \
— r2 L2
R
3wl (D) — 2
-5 5 Load/Store s — 3
E 1 0 Fetch L1 E D1
. = 2 Lo Load/Store
Time Clock glE ¥ 7
W |- (D) y
> RPN R g K |L|T/T||| — Access same
variables

AMATH 483/583 High-Performance Scientific Computing Spring 2019 — o[universiTY, /
University of Washington by Andrew Lumsdaine / e |

Cache Coherence Hardware Same variable can be

managed in two different caches
\ N
A multithreaded task | | Cache coherence / What if one \
can use multiple memory consistency | | gets modified?
: hreads can
cores at a time s / H
—_Fi . shaxe memory
1| r tructions N
L L \\
R
DR || <=l L= [
=45 5 Load/Store 5 T
E 1 0 Fetch L1 E W
. = 2 Lo Load/Store
Time o El] > [;
> w r Load/Store ©) ‘
Toee T L Access same
variables

AMATH 483/583 High-Performance Scientific Computing Spring 2019 — o[universiTY, /
University of Washington by Andrew Lumsdaine / e

Multitasking on Multicore

In 1/8 the
time (?)

Need enough
cores (8)

Nonetheless, this is the
essence of parallel computing

Parallel computation isn’t
done until all cores are done

r0

Fetch

r1

r2

r3

Work needs to
be balanced

r4

r5

00pSs

r0

Instructions

i

Load/Store

Fetch

r1

r2

r3

r4

LN Ly
U= H=rEE

r5

Instructions

i

Load/Store

L1
(1)

L1
(D)

L2

L1
(D)

L2

L3

AMATH 483/583 High-Performance Scientific Computing Spring 2019

University of Washington by Andrew Lumsdaine

»»»»»»

Not the same as

concurrent
Fetch R
rsirugions] | |2
=
Load/Store

IIIIIIIIIII

Parallelization Strategy

A
vy

Finding
Concurrency
PATTERNS ¢
FOR PARALLEL .
PROGRAMMING Algorithm

Structure

i

Supporting
Structures

I

Implementation
Mechanisms

Timothy Mattson, Beverly Sanders, and Berna Massingill.
2004. Patterns for Parallel Programming(First ed.). Addison-
Wesley Professional.

AMATH 483/583 High-Performance Scientific Computing Spring 2019 - ™ | _uNiversiyo
University of Washington by Andrew Lumsdaine / et

Finding Concurrency

Decompose problem into pieces
that can execute concurrently

Into tasks that can / Finding Concurrency

Decomposition

execute concurrently [- | Dependency Analysis

Group Tasks

sk Decomposition

{

Qata Decomposition

Order Tasks

{

Data Sharing

// """"""""""""""""""" |

Units that can be operated
on (relatively) independently

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific C
University of Washington by Andrew

Algorithm
Structure

!

Supporting
Structures

Implementation

Mechanisms

Pacific Northwest W
NATIONAL LABORATORY J

g f
e TS gt of Evargy WASHINGTON

UNIVERSITY o

Ways to group tasks to simplify

Flndlng Concurrency management of dependencies

Finding Concurrency /
S | ——
Decomposition ’ !
— L Group Tasks e
Task Decomposition Ly { <—> Design Evaluation
Data Decomposition Orderig'asks —— '
: - | Data Sharing
Ways to group tasks to simplify L |
management of dependencies /] AN
Algorithm | Given a decomposition,
Structure t h dat
Ways to order tasks for : ways to share data
' among tasks
correctness, other constraints Supporting g
Structures

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific C
University of Washington by Andrew

W

UNIVERSITY of
WASHINGTON

Implementation e
Mechanisms P

Algorithm Structure fundamental
Finding

i organizing principle
Organize around o g gp P

concurrent tasks f /

Algorithm Structure 7
|Organize by Tasks Organize by Data Decomposition . Organize by Flow of Data \
Task Parallelism Geometric Decomposition Pipeline
Divide and Conquer Recursive Data Event-Based Coordination
Exploit potential t ;
P P . .. Supporting
concurrency in divide Structures
and conquer algorithms ¢
Implementation
e L e e \echanisms 2 — No:?';j A

Spring 2019 & s / UNIVERSITY of
20 g =prng > Al WASHINGTON

University of Washington by Andrew Lumsdaine

Algorithm Structure

Fundamental
Finding i T
organizin rinciple
Concurrency & &P P

t e

Algorithm Structure 7

Organize by Tasks Organize by Data Decomposition . Organize by Flow of Data
Task Parallelism , Geometric Decomposition Pipeline
Divide and Conquer | Recursive Data \ Event-Based Coordination
O ' d/ I t >
rganize arouna a iarge : . .
dgt fruct that .g Supporting Organize around operations
dla structure tnat Is .
ey > SUCAIES on recursive data structure
broken into “chunks ¢
Implementation
e L e e \echanisms - No:?';j A/

21 University of Washington by Andrew Lumsdaine

Algorithm Structure

Fundamental . Finding Organize by sequence
.. . oncurrenc i
organizing principle y of independent stages
\\ t
Algorithm Structure
Organize by Tasks Organize by Data Decomposition . Organize by Flow of Data
Task Parallelism Geometric Decomposition Pipeline
Divide and Conquer Recursive Data Event-Based Coordination
Supporting Organize by inherent
Structtures communication among tasks
NORTHWEST INSTITUTE for ADVANCED COMF Implementation
g ettidd Mechanisms | Pacific Northwest | W

Spring 2019 & s / UNIVERSITY of
9 5pring : e TS gt of Evargy WASHINGTON

22 University of Washington by Andrew Lumsdaine

Supporting Structures| _ Finding

Organize communication
and sharing between UEs

AN

Concurrency

:

Algorithm
Structure

Explicitly manage
shared data

:

Centralized control

L . Supporting Structures
distributing tasks -y :

T Program Structures

Translate loop

SPMD

Data Structuies

/ Safely share
a queue

/

Shared D'ata

// Manage array

bodies into tasks |} Manager/Worker

Shared Queue

i [Loop Parallelism

’/ data partitioned

Distributed Array /| | among UEs

N
Sets of N

dynamic tasks “ Fork/Join

ORTHWEST INSTITUTE for ADVANCED COMP b IEURI

23 AMATH 483/583

University of Washington by Andrew Lumsdaine

Mechanisms

UNIVERSITY of
WASHINGTON

Implementation Mechanisms

Finding
Concurrency

i

Algorithm
Structure

Manage task
lifetimes

i

Enforce ordering

constraints
Structures

Supporting needs to be when UEs

Get data where it

don’t share memory

N ¥

\Qplementation Mechanisms

AMATH 453/5863 High-Pertormance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

aaaaaaaaaa of
WASHINGTON

Example

 Find the value of 7T

« Using formula 45

1
4
T = dx
o 1+ 22

0.0 0.2 0.4 0.6 0.8 1.0

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : - T_ . UNIVERSITY of
. . . : 3 P> Ry WASHINGTON
University of Washington by Andrew Lumsdaine)

Discretization

4-5 | ! ! !

4.0 -

35 T _
3.0 \]

2.5 T~]

2.0

>

0.0 0.2 0.4 0.6 0.8 1.0

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : S =5 ‘ UNIVERSITY of
. . . N 3 for thee LIS Energy WASHINGTON
University of Washington by Andrew Lumsdaine)

Numerical Quadrature

4.5 . . .

4.0

3.5

3.0 \

2.5 0

>

2.0 h

I+1

0.0 0.2 0.4 0.6

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

Numerical Quadrature

4.5
4.0 4 = 4
| — 1+2(i)2 14+ (ih)?
3.5 |
// \ 4
3.0 A=h —— |
> ,< 1+ (Zh)
/
2.5 0 1 , — i
> i+1
1.5 N-1
1.0 y
0.0 0.2 0.4 0.6 0.8 1.0

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : k _RY '''''''''''
University of Washington by Andrew Lumsdaine S D —

Numerical Quadrature

4-5 | ! ! !

4.0 N-—-1

3.5 — 1+ (th)? | -

3.0 \ |

2.5 0

20 h 3 - . \

I+1

>

0.0 0.2 0.4 0.6 0.8 1.0

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 ‘ S e ‘ UNIVERSITY of
. . . N for thee 1L f Energy WASHINGTON
University of Washington by Andrew Lumsdaine

Numerical Quadrature

4.5 | | ! !
double pi = O;
4.0 — for (int i = 0; i < N; ++i) { 1
35 4 pi += h * 4.0 / (1 + i*h*ixh);
. —} .
3.0 \ |
>

2.5 .

R i+
1.5 N-1
1.0 y

0.0 0.2 0.4 0.6 0.8 1.0

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 ‘ SR e ‘ UNIVERSITY of
. . . N for the LS. 1t of Enengy WASHINGTON
University of Washington by Andrew Lumsdaine

Finding Concurrency

Finding Concurrency

Decomposition
Group Tasks

{

Order Tasks

{

Data Sharing

Task Decomposition

Data Decomposition

Algorithm
Structure

!

Supporting
Structures

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific C
University of Washington by Andrew

Implementation Gy [W

NATIONAL LABORATORY
UNIVERSITY of

Mechanisms T e WASHINGTON

31

Finding Concurrency Partial sums are Can be computed
all independe/nt// concurrently

45 T T I

i i i
4.0l \ i |

3.5 i

3.0 \ |

2.5 0

2.0 3 T~

I+1

>

0.0 0.2 0.4 0.6 0.8 1.0

NORTHWEST INSTITUTE for ADVANCED COMPUTING

) NATIONA! ATORY / 2
i - i ifi i i ERSITY o
AMATH 483/5.83 ngh Performance Scientific Computmg Spring 2019 e e #X%LINGTO{NI
University of Washington by Andrew Lumsdaine

Finding Concurrency Sum over
partial sums
4.5 . . . f

Partial sum

| I / 1 /\(
4.0 \ L i,
— ks [i<(k+1)N)
3.5 ~ h
3.0 - k=0 i 1=kN i
- o~
2.5 0 1 , —~ i
2.0 3 . T
! i+1
15 w
1.0
0.0 0.2 04 0.6 0.8 1.0

NORTHWEST INSTITUTE for ADVANCED COMPUTING

) NATIONAL L. ATORY / 2
AMATH 483/583 High-Performance Scientific Computing Spring 2019 e - UNIVERSITY of
. . . . for the ULS. Dy of Energy WASHINGTON
University of Washington by Andrew Lumsdaine

Finding Concurrency

Finding Concurrency
S — | Dependency Analysis |
Decomposition L |
; L Group Tasks
.| Task Decomposition | | f
/ | Data Decompossition | | Orderig'asks
Data Sharing
Decompose total || | =
sum into a sum of) N
partial sums Each task can be Algorithm Need to sum up
Structure .
computed T independent
concurrently SuEEsriie partial sums
Structures

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific C
University of Washington by Andrew

implementation [N B ¥, £

Mechanisms Dt Oty e WASHINGTON

34

Alaorithm Structure

Partial sums are Finding
independent tasks Concurrency

!

Algorithm Structure
Organize by Tasks Organize by Data Decomposition . Organize by Flow of Data
Task Parallelism Geometric Decomposition Pipeline
Divide and Conquer Recursive Data Event-Based Coordination
Can be executed Supporting
in parallel Str”‘;‘“res
NORTHWEST INSTITUTE for ADVANCED COMF Implementation
Sk e Mechanisms | Pacific Northwest _ W

Spring 2019 & s [UNIVERSITY of
9 5pring : e TS gt of Evargy WASHINGTON

3 University of Washington by Andrew Lumsdaine

Supporting Structures| _ Finding

Concurrency

:

Algorithm Global sum (may or
Structure may not be shared)

: 7

Supporting Structures
Program Structures | . Data Structures
bodies into tasks Manager/Worker || | Shared Queue
\;\ . i ; . "
; Loop Parallelism L Distributed Array
Fork/Join

NORTHWEST INSTITUTE for ADVANCED coMP Jebisiiiietoy A AT
e Mechanisms == g Pecfichiortwest. -
36 . : FTITREETE, WASHINGTON

University of Washington by Andrew Lumsdaine

Implementation Mechanisms

Use C++
async

Finding
Concurrency

i

Algorithm
Structure

No ordering
constraints

i

Supporting
Structures

N\

!

Use shared memory

LN

|
|
|
|
|
|
\

Synchronization

mplementation Mechanisms

LN

aaaaaaaaaa of

AMATH 453/5863 High-Pertormance Scientific Computing Spring 2019

University of Washington by Andrew Lumsdaine

WASHINGTON

Sequential Implementation (Two Nested Loops)

| double b = 1.0 / (double) intervals;~ | Discretization

For each set
of discretized Mi = 0.0;

points for (int k = 0; k < intervals; k += blocksize) {
| double partial_pi = 0.0;
Compute ——for—(int 1 = k; i < (k+blocksize); ++i) {
partial sum partial_pi += 4.0 / (1.0 + (i*h*i%*h));
}

__pi += h * partial_pi;

Accumulate }
final sum

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 / ety Opereiod 1y . UN§VEIR13”’1Y of
University of Washington by Andrew Lumsdaine / S D —

Threads vs Tasks

void sayHello(int tnum) {
cout << "Hello World. I am thread " << tnum << endl;

} \
int main() {
std: :thread tid[16];

Task

Launch |—1 “fork”

for (int 1 = 0; i < 16; ++i)

tid[i] = thread (sayHello, 1i); threads
for (int i = 0; i < 16; ++i) Wait for tasks | — “join”
tid[i].join(); - to finish

return O;

}

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 / - UNIVERSITY of
. . . : e i WASHINGTON
University of Washington by Andrew Lumsdaine /

Th reads void partial_pi(unsigned long begin, unsigned long end) {
Thread // double partial_pi = 0.0;

for (unsigned long i = begin; i < end; ++i) {

returns void partial_pi += 4.0 / (1.0 + (ixh*ixh));
+
return partial_pi;
Oops ¥
int
main(int argc, char *argv[])
How do we get {

partial sums? double h = 1.0 / (double) intervals;

ouble pi = 0.0;

H g dat for &nt k = 0; k < intervals; k += blocksize) {
OW 40O we update \\
global total? pi += h * partial_pi;
+

std::cout << "pi is approximately " << pi << std::endl;

NORTHWEST INSTITUTE for A return O;
}
40

Threads

Task

Assign task
to thread

NORTHWEST INSTITUTE for AL

L~

void partial_pi(unsigned long begin, unsigned long end, double h, double& pi)
double partial_pi = 0.0;
for (unsigned long i = begin; i < end; ++i) {
partial_pi += 4.0 / (1.0 + (i*hx*ixh));

}
pi += h#*partial_pi;
}
int
main(int argc, char *argv[])
{

std: :vector<std::thread> threads;
double h = 1.0 / (double) intervals;

double pi = 0.0;
for (unsigned long k = 0; k < num_blocks; ++k) {
threads.push_back(std: :thread(partial_pi,
k*blocksize, (k+1)*blocksize, h, std::ref(pi)));
}

for (unsigned long k = 0; k < num_blocks; ++k) {
threads [k] . join();
}

std::cout << "pi is approximately " << pi << std::endl;

return O;

Threads

L‘?Ca' Shared
variable

variable
/ N

void partial_pi(Mnsigned long begin, unsigned long end, double h,
double partial_pi = 0.0;
for (unsigned long i = begin; i < end; ++i) {
partial_pi += 4.0 / (1.0 + (i*hx*ixh));

+
pi += h*partial_pi;

N\

Y

double& pi) {

N\

Update shared
variable

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

Threads

int main(int argc, char *argv[]) {

Container for

created threads

double h = 1.0 / (double) intervals; Have to explicit|

std::vector<std::thread> threads; tag this as a
referen

double pi = 0.0; eference

Thread
constructor

for (unsigned long k = 0; k < num_blocks; ++k) {
threads.push_back(

std: :thread(
partial_pi, k*blocksize, (k+1)*blocksize, h, std::ref(pi)));

Function that

will be the task

k = 0; k < num_blocks; ++k) {

Arguments to
the function

std::cout << "pi is appreximately " << pi << std::endl;

return 0; We are invoking
} std::thread, not
AMATH 483583 Hih-Po partial pi . = s

Results

Correct
$./thrpi ////
pli is approximately 3.14159
. Correct
$./thrpi ////
pi is approximately 3.14159 Exactly same
program!
Incorrect! /
/ \ What
happened?

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 / St e UNIVERSITY of
. . . N for thee 1L ¥ Enecgy WASHINGTON
University of Washington by Andrew Lumsdaine /

Name This Famous Couple

Bonnie Parker

Clyde Barrow

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

Bonnie and Clyde Use ATMs

int bank_balance = 300;

void withdraw(const string& msg, int amount) {
int bal = bank_balance;
string out_string = msg + " withdraws " + to_string(amount) + "\n";
cout << out_string;
bank_balance = bal - amount;

¥

int main() {
cout << "Starting balance is " << bank_balance << endl;

thread bonnie(withdraw, "Bonnie", 100);
thread clyde(withdraw, "Clyde", 100);

bonnie. join();
clyde.join();

cout << "Final bank balance is " << bank_balance << endl;

return O;

NORTHWEST INSTITUTE for ADVANCED COMPUTING , ‘waﬂ’// 1"\"
Pacific Northwest /

NATIONAL LABORATORY

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of

46 WASHINGTON

Procsdly Bavene
for the UL of Energ,

Withdraw Function

int bank_balance = 300; Get balance

void withdraw(const string& Misg, int amount) {
int bal = bank_balance;
string out_string = msg + " withdraws " + to_string(amount) + "\n";
cout << out_string;
bank_balance = bal - amount;

~| Compute the
Save new new balance

balance

NORTHWEST INSTITUTE for ADVANCED COMPUTING
UNIVERSITY of

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : o - SR
University of Washington by Andrew Lumsdaine et =

Making Concurrent Withdrawals

int main() {

cout << "Starting balance is " << bank_balance << endl;
Launch ——
threads thread bonnie(withdraw, "Bonnie", 100);

thread clyde(withdraw,—"Clyde", 100); Run withdraw

bonnie. join(); \\\\\ function

clyde.join(); Constructor

cout << "Final bank balance is " << bank_balance << endl;

G UF . Wait for
completion

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 / S g (UNIVERSITY of
University of Washington by Andrew Lumsdaine / preet =

Bonnie and Clyde Use ATMs

$./a.out

Starting balance is 300
Bonnie withdraws 100
Clyde withdraws 100

Is this
correct?

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 / - i (UNIVERSITY of
University of Washington by Andrew Lumsdaine / 5 -

What Happened? |Bonnie’s thread,
bal =300

void| withdraw st string& msg, int amount) { CIyde's thread,
int| bal ank_balance; -
string out_s = msg + " withdraws " + to_string(amt) bal = 300

I void withdr onst string& msg, int amount) {

. int bal™= bank_balance;
Context switch string out_s = msg + " withdraws " + to_string(amt) + "\n";

cout << out_s; .
bank_balance = bal - amount; Context switch

} | \

_] cout << out_s; PrOfIt!
bal is still 300 bank_balance = bal - amount;
— ¥ N\
bank_balance bal is still 300
gets 200 ,

bank_balance

AMATH 4 | e o — Y of
50 g e t S 2 O O ‘ e S Do of oy WASHINGTON
‘l

What Happened: Race Condition

« Final answer depends on instructions from different threads are
interleaved with each other

« Often occurs with shared writing of shared data
« Often due to read then update shared data
 What was true at the read is not true at the update

NORTHWEST INSTITUTE for ADVANCED COMPUTING
P e v

AMATH 483/583 High-Performance Scientific Computing Spring 2019 Precelly Opersted by Bamese
University of Washington by Andrew Lumsdaine] S D —

IIIIIIIIIII

Critical Section Problem

int bank_balance = 300;

void withdraw(const string& msg, int amount) A{
int bal = bank_balance;
string out_string = msg + " withdraws " + to_string(amount) + "\n";
cout << out_string;
bank_balance = bal - amount;

- \
N\
We want to tell When some thread is executing
operating system not to this critical section, no other

run anything else here thread may execute it

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 ‘ S e ‘ UNIVERSITY of
. . . N for thee 1L f Energy WASHINGTON
University of Washington by Andrew Lumsdaine

The Critical-Section Problem

n processes all competing to use some shared data

« Each process has a code segment, called critical section, in which the
shared data is accessed.

* Problem — ensure that when one process is executing in its critical
section, no other process is allowed to execute in its critical section.

 What do we mean by “execute in its critical section™?

NORTHWEST INSTITUTE for ADVANCED COMPUTING ~ W
Pacific Northwest -

AMATH 483/583 High-Performance Scientific Computing Spring 2019 T
University of Washington by Andrew Lumsdaine 1 S D —

UNIVERSITY o

of
53 WASHINGTON

Solution to Critical-Section Problem

 Mutual Exclusion - If process Pi is executing in its critical section,
then no other processes can be executing in their critical sections

* Progress - If no process is executing in its critical section and there
exist some processes that wish to enter their critical section, then the
selection of the processes that will enter the critical section next
cannot be postponed indefinitely

 Bounded Waiting - A bound must exist on the number of times that
other processes are allowed to enter their critical sections after a
process has made a request to enter its critical section and before
that request is granted
— Assume that each process executes at a nonzero speed
— No assumption concerning relative speed of the N processes

NORTHWEST INSTITUTE for ADVANCED COMPUTING \xf’/ 'w
P e v :

AMATH 483/583 High-Performance Scientific Computing Spring 2019 % s / f
University of Washington by Andrew Lumsdaine 3 (lohot ron e e PVASEINGION

UNIVERSITY o

54

Critical Section Problem

int bank_balance = 300;

void withdraw(const string& msg, int amount) A{
int bal = bank_balance;
string out_string = msg + " withdraws " + to_string(amount) + "\n";
cout << out_string;

| bank_balance = bal - am

A

\ N

=3

Let’s just think about

This is a critical section .
mutual exclusion for now

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : T_ i UNIVERSITY of
. . . : P> Ry WASHINGTON
University of Washington by Andrew Lumsdaine

Critical Section Problem

bool lock = false; Test if another
thread is holding
the lock

void withdraw(const-String& msg, int amount) {
while (lock == true)

int bank_balance = 300;

Take the lock

N Spin if it is
:LOCk = true;\
Execute " int bal = bank balance: Fall through when lock == false
critical string out_string = msg + " withdraws " + to_string(amount) + "\n";

cout << out_string;

section bank_balance = bal - amount;

Release lock -—}‘ lock = false;

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 / e UNIVERSITY of
. . . N for Kegy WASHINGTON
University of Washington by Andrew Lumsdaine /

Aside

bool lock = false;
int bank_balance = 300;
void withdraw(const string& msg, int amount) {
string out_string = msg + " withdraws " + to_string(amount) + "\n";

cout << out_string;
bank_balance -= amount;

} \
\

Still a race

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

W

UNIVERSITY of
WASHINGTON

Pacific Northwest
NATIONAL LABORATORY

57

Aside

bool lock = false;

int bank_balance = 300;

void withdraw(const string& msg, int amount) {

Then write

\\\\\ string out_string = msg + " withdraws " + to_string(amount) + "\n";

\\\\ cout << out_string;
bank_balance = bank_balance - amount;

/.
/ A

Still a race Read Compute

NORTHWEST INSTITUTE for ADVANCED COMPUTING ~ A" V4
Paciicforitwest |

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of

58 WASHINGTON

Critical Section Problem

Critical
section

NORTHWEST INSTITUTE for ADVANCED COMPUTING

bool lock = false;
int bank_balance = 300;

void withdraw(const string& msg, int amount) {

string out_string = msg + " withdraws " + to_string(amount) + "\n'";

cout << out_string;

bank_balance = bank_balance - amount;

AMATH 483/583 High-Performance Scientific Computing Spring 2019

59 University of Washington by Andrew Lumsdaine

Pacific Northwest
NATIONAL LABOI \TORY

Proodly Operated by Baese
for the LS. Department of Energ)

W

UNIVERSITY of
WASHINGTON

Solution (?)

Take the lock

Execute
critical
section

Release lock

T~

+

bool lock = false;

int bank_balance = 300;

| —

Test if another
thread is holding

the lock

string out_stri

cout << out_stTring;

\ whﬂW

b

lock = trué?“‘————_________

void withdraw(const string& msg, int amount) {

Spinifitis

= msg + " withdraws " + to_string(amount) + "\n";

Fall through when lock

== false

bank_balance = bank_balance - amount;

lock = false;

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

60

W

UNIVERSITY of
WASHINGTON

Solution (?)

Common
pattern (when

correct)

Take the lock

AN
N

bool lock = false;

int bank_balance = 300;

Test if another
thread is holding
the lock

void withdraw(const string& msg, int amount) {

string out_stri

cout << out_stTring;

whilW Spinifitis

Lock might be
taken between the
test and the set

//&bck = trué?“‘—————________

= msg + " withdraws " + to_string(amount) + "\n";

Fall through when lock

== false

bank_balance = bank_balance - amount;

lock = false;

+

NORTHWEST INSTITUTE for ADVANCED COMPUTI problem for another

We’ve traded one
critical section

61

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

W

UNIVERSITY of
WASHINGTON

Synchronization Hardware

« Many systems provide hardware support for critical section code

« Uniprocessors — could disable interrupts
— Currently running code would execute without preemption
— Generally too inefficient on multiprocessor systems
» Operating systems using this not broadly scalable
 Modern machines provide special atomic hardware instructions
« Atomic = non-interruptable
— Either test memory word and set value
— Or swap contents of two memory words

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performan
University of Washington by Andrew Lumsdaine

Pacific Northwest
NATIONAL LABORATORY

ce Scientific Computing Spring 2019 > 0 | _UNIVERSITYo f
PUtng =pring & e S gt of Sy WASHINGTON

Test and Set

bool TestAndSet (bool& target) bool TestAndSet (bool *target)
{ {

bool rv = target; bool rv = *target;

target = TRUE; *target = TRUE;

return rv: return rv:
by \ \ Iy

These are the Implemented in
semantics, not the hardware as an
implementation invisible instruction

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 ‘ S e UNIVERSITY of
. . . N for thee 1L f Energy WASHINGTON
University of Washington by Andrew Lumsdaine

Compare And Swap

void CompareAndSwap (bool& a, bool& b)
{

bool temp = a;

a = b;

b = temp:

’ \ N\

void CompareAndSwap (bool *a, bool *b)
{

bool temp = *a;

*a = *Db;

*b = temp:
}

These are the
semantics, not the
implementation

Implemented in
hardware as an
invisible instruction

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

Correct Withdraw

int bank_balance = 300;
bool lock = false;

void withdraw(const string& msg, int amount) {
Under what string out_s = msg + " withdraws " + to_string(amt) + "\n";
cout << out_s;

condition will

we fall through? Nyhile (TestAndSet (lock) == true)—
l ;

Spin while the value is
true (another thread

What is the holds the lock)
bank_balance —= amount;
state of the
lock? lock = false; Release the lock
}

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 ‘ SR e ‘ UNIVERSITY of
. . . N for the LS. Dey of Energy WASHINGTON
University of Washington by Andrew Lumsdaine

Correct Withdraw

int bank_balance = 300;
bool lock = false;

void withdraw(const string& msg, int amount) {
string out_s = msg + " withdraws " + to_string(amt) + "\n";
cout << out_s;

What is the /jggle (TestAndSet (lock) == true) — ”Spin lock”
CPU doing? ’ (common pattern)
I bank’ balance -= amount;
How is it
affecting other [lock = false; Is this a go.od
threads? programming

ion?
NORTHWEST INSTITUTE for ADVANCED COMPUTII abStraCt|0n)

AMATH 483/583 High-Performance Scientific Computing Spring 2019 ‘ S e UNIVERSITY of
. . . N for thee 1L f Energy WASHINGTON
University of Washington by Andrew Lumsdaine

Multitasking on Multicore

In 1/8 the
time (?)

Need enough
cores (8)

Nonetheless, this is the
essence of parallel computing

Parallel computation isn’t
done until all cores are done

r0

Fetch

r1

r2

r3

Work needs to
be balanced

r4

r5

00pSs

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019

r0

Instructions

i

Load/Store

Fetch

r1

r2

r3

r4

LN Ly
U= H=rEE

r5

Instructions

i

Load/Store

L1
(1)

L1
(D)

L2

L1
(D)

L2

L3

University of Washington by Andrew Lumsdaine

»»»»»»

Not the same as

concurrent
Fetch R
rsirugions] | |2
=
Load/Store

IIIIIIIIIII

Numerical Quadrature Task

double partial_pi(unsigned long begin, unsigned long end, double h) {
double partial_pi = 0.0;
fqr (unsigned Ieng i = begin; i < end; ++i) {

partial_pi += N0 / (1.0 + (i*h*i*h));

}
reFurn partial_pi;
}
N\
Nothing remarkable Nothing remarkable
about this function about this function

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 / i i (UNIVERSITY of
University of Washington by Andrew Lumsdaine iaie L

Performance - CPU time |

OS time

pi 500060000 1
oxim y i;;élSQ//

2.006u 0.006s 0:02.01 99.5%—

Elapsed time

Utilization

CPU time_+-

OS time

$ time ./taskpi 500000000 2 :
. , Elapsed time
pi is approximately §;1§159//
198. 9%

1.895u" 0.008s 0:00.9

Utilization

CPU time |-

OS time

$ time ./tas

pi is ap

69

i 5000006000 4 _
6ximately 3.141 Elapsed time
2,020u 0,007 0:00.5L 396 OB tilization

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

\TIONAL LABORATORY

UNIVERSITY of

Performance Elapsed time Utilization

OsS time time ./taskpi/500000000/ 8
CPU time \pi Is. approximately 3.14159
3.669u .008s 0:00.48 762.5Y

EIapsed time Utilization

OS time time ./taskpi SOOOOOOOO
CPU time 2165 appfgflm telynf i4n5?w

Elapsed time T Utilization

OS time

time ./taskI:‘ZSOOOOOOO 50000
CPU time ~P1 is~approximately 3.14159

2.963u 1.194s 0:00.92 451.0%

Too many .
Pacrf' ic Northwest | /5
] th re a d S ing Spring 2019 / T:":}L IT}C?SRAT?RY UNéVElR]ilT_l_f of
n N R — / for the LLS. Dirartment of Energy

erredaine

Parallel Speedup, Parallel Efficiency

Speedup on p Time to run problem | | Time to run problem
size n on one PU size n on p PUs

processing units
S(p) =
) T'(n,p)

Divided by

Efficiency on p Ideal parallel actual parallel
processing units | | execution time | | €xecution time

10" |

Speedup

| T(n1)/p _P@1)/T(p) _ SB) ..

Ep) = T(n,p) p p

NORTHWEST INSTITUTE for ADVANCED COMPUTING
J \TIONAL LABORATORY
AMATH 483/583 High-Performance Scientific Computing Spring 2019 / e - UNIVERSITY of
University of Washington by Andrew Lumsdaine / S D —

Superlinear

Scaling
- (fishy)

Parallel Speedup

10° | 1

Linear (ideal)

Speedup
=
o»—-

Sublinear (typical)

10° : —
10!

UNIVERSITY of
WASHINGTON

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Name This Famous Person

S| "validity of the single processor approach to
| achieving large-scale computing capabilities,”
AFIPS Conference Proceedings (30): 483—485,
1967.

Gene Amdahl (1922-2015)

Amdahl’s Law

NORTHWEST INSTITUTE for ADVANCED COMPUTING \vf’/ 'W'

Pacific Northwest
R i R . . i o NATIONAL LABORATORY J UNIVERSITY of
AMATH 483/5.83 ngh Performance Scientific Computmg Spring 2019 : Pty Ot e SR
University of Washington by Andrew Lumsdaine)

73

Limits to Parallelism (Amdahls’s Law) Sequential

Inherently - T'(n,1) / eXGClition time
sequential

|
Inherently < > < .
sequential aT'(n,1) (1 —)T (n, 1)\ Perfectly

\‘ parallelizable

T(?’L, 1) — OéT(?’L, 1) + (1 R O()T(n, 1)‘\ Perfectly
parallelizable

/T (n, 1)(a+ 1 — 0 Ideal speedup (for

Sequential parallelizable portion)

portion

'NSTITUTE for ADVANCED COMPUTING

Pacific Northwest
/| NATIONAL LABORATORY

UNIVERSITY of

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Limits to Parallelism (Amdahls’s Law)

Sequential
nherently | T(n,1) e execmition time
sequential

T
Speed = > >
beestp ol (n,1) (1—-a)T(n,1)
N \ Perfectly
S(p) = T, 1) — T(n, i) parallelizable

, 1
oo O P) = aJ

NORTHWEST INSTITUTE for ADVANCED COMPUTING

f NATION. BORATORY 25
AMATH 483/583 High-Performance Scientific Computing Spring 2019 ' o AR G
University of Washington by Andrew Lumsdaine / R

Limits to Parallelism (Amdahls’s Law) Perfectly

Inherently aT'(n,1) (1 —a)T(n,1) _— parallelizable
. - - >
sequential _
< >
I L)
| Speedup is the
- i\ To this ratio of this
T(nap)’p—)oo
T(n,1)
. 1 S(p) =+
lim S(p) = — (7, p)
p—00 o)

NORTHWEST INSTITUTE for ADVANCED COMPUTING

f NATION. BORATORY
AMATH 483/583 High-Performance Scientific Computing Spring 2019 ' o AR G
University of Washington by Andrew Lumsdaine / R

Limits to Parallelism (Amdahl’s Law)

Parallel Speedup

a = 0.05

10° —

Asym pfotically

approaches 20

10° 10?

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019

7 University of Washington by Andrew Lumsdaine

W

UNIVERSITY of
WASHINGTON

Limits to Parallelism No matter how
many cores added

Parallel Speedup

10° ¢ — , _
o= 0.01
- Not scalable
10° | | Exascale machines might ;
§ ' have millions of cores / 5
§ Asymptotically | |
i 10t } approaches 100 | |
On 1024 cores
10° . , —

NORTHWEST INSTITUTE for ADVANCED COMPUTING

igh- ientifi i i : ‘ RSITY o
AMATH 483/583 ngh Performance Scientific Computmg Spring 2019 / Pty Ot e &J:é‘glRNg]‘fO&
University of Washington by Andrew Lumsdaine /

There are no Limits (Gustafson’s Law)

* Doing the same problem faster and faster is not how we
use parallel computers

« Rather, we solve bigger and more difficult problems
 |.e., the amount of parallelizable work grows

ol (n,1) p(l —a)T(n,1)

T(n,p) =T(n,1)

NORTHWEST INSTITUTE for ADVANCED COMPUTING
CC BY-SA 3.0, https://en.wikipedia.org/w/index.php2cunidal 7451775 oo | WASHINGTON

!
!
/

There are no Limits (

ol (n,1)
- —>-

tafson’s Law)

Perfectly
parallelizable

p(1 — a)T(nsA]

>

<

Ratio of non sped T(n,p) =T(n,1)

up to sped up

>

\

Parallel
performance

() :\a@(n,1)+p(1—a):ﬁ(n,1) _ aT(n,1)?Iz§l{I)a)T(n,1) — a+p(1—a)

T (n,p)

Bp) =) m—p | Jim Ep)=(1-a) |

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Pacific Northwest
NATIONAL LABORATORY

UNIVERSITY of
NNNNNNNNNN

Two Types of Scaling

Ideal
Parallel Speedup
Scalable

10° ¢ Weak scalin
o Strong scaling T Gustaf 5
§ Amdahl ustafson
2

10! | / |

Not scalable
10° — —
10° 10? 102

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

Stay Tuned

e C++ threads
« C++ async()
e C++ atomics

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : T_ i UNIVERSITY of
. . . : P> Ry WASHINGTON
University of Washington by Andrew Lumsdaine

Thank you!

NORTHWEST INSTITUTE for ADVANCED COMPUTING - \7’/ w
Pacific Northwest / /5

NATIONAL LABORATORY

R UNIVERSITY of
AMATH 483/583 High-Performance Scientific Computing Spring 2019 3 WASHINGTON

83 University of Washington by Andrew Lumsdaine

Creative Commons BY-NC-SA 4.0 License

0 0,

© Andrew Lumsdaine, 2017-2018

Except where otherwise noted, this work is licensed under

https://creativecommons.org/licenses/by-nc-sa/4.0/

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 / S o[unNiversiTY,
University of Washington by Andrew Lumsdaine / preet =

