
AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583
High Performance Scientific Computing

Andrew Lumsdaine
Northwest Institute for Advanced Computing
Pacific Northwest National Laboratory
University of Washington
Seattle, WA

Lecture 10:
Processes, Threads, Concurrency, Parallelism

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Overview
• Multiple cores
• Concurrency
• Processes
• Threads
• Parallelization strategies
• Correctness

2

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Supercomputers (HPC)

3

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Schematically

Instructions

Data

F
D
R
E
W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W L1

(D)

L1
(I)

L2

L3

L1
(D)

L1
(I)

L2

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W

F
D
R
E
W

Instructions

Data

F
D
R
E
W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W L1

(D)

L1
(I)

L2

L3

L1
(D)

L1
(I)

L2

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W

F
D
R
E
W

Bus I/O
Devices

Instructions

Data

F
D
R
E
W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W L1

(D)

L1
(I)

L2

L3

L1
(D)

L1
(I)

L2

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W

F
D
R
E
W

Instructions

Data

F
D
R
E
W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W L1

(D)

L1
(I)

L2

L3

L1
(D)

L1
(I)

L2

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W

F
D
R
E
W

Bus I/O
Devices

Instructions

Data

F
D
R
E
W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W L1

(D)

L1
(I)

L2

L3

L1
(D)

L1
(I)

L2

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W

F
D
R
E
W

Instructions

Data

F
D
R
E
W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W L1

(D)

L1
(I)

L2

L3

L1
(D)

L1
(I)

L2

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W

F
D
R
E
W

Bus I/O
Devices

Instructions

Data

F
D
R
E
W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W L1

(D)

L1
(I)

L2

L3

L1
(D)

L1
(I)

L2

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W

F
D
R
E
W

Instructions

Data

F
D
R
E
W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W L1

(D)

L1
(I)

L2

L3

L1
(D)

L1
(I)

L2

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W

F
D
R
E
W

Bus I/O
Devices

Put sockets
on a blade

Put blades
in a chassis

Put chassis
in a rack

Put racks in
a center

Put centers
in the cloud

4

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Parallelism and HPC so far

Fetch
Decode
R Read
Execute
R Write

Instructions

Data

Fetch

Load/Store... ...
Clock

cycle

I1
I2
I3

D1
D2

I2
I3

I1

I4

Pipelining: Multiple
instructions being
processed at once

0512 255 127

ymm0

zmm0

xmm0

64 bits1x double

SIMD (vector) parallelism:
Multiple operands
processed at once

Still sequential
(single core)

Order of operations
is determined

5

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

General Performance Principles
• Work harder

– Faster core
• Work smarter

– Branch predictions, etc
– Better compilation
– Better algorithm
– Better implementation

• Get help

Dennard scaling
(ended 2005)

What
about this?

We did this

Parallel
Computing

6

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Flynn’s Taxonomy (Aside)
• Classic classification of parallel architectures (Michael Flynn, 1966)

7

Single Instruction Multiple Instruction

Si
ng

le
 D

at
a

M
ul

tip
le

 D
at

a

SIMD

SISD MISD

MIMD

Instruction
Storage

Instruction
Unit

Execution
Unit

Operand
Storage

Instruction
Storage

Instruction
Unit

Execution
Unit

Instruction
Storage

Instruction
Unit

Execution
Unit

Instruction
Storage

Instruction
Unit

Execution
Unit

Instruction
Storage

Instruction
Unit

Execution
Unit...

Data
Storage

Based on multiplicity
of instruction

streams, data storage

Plain old
sequential

Anyone in HPC must
know Flynn’s taxonomy

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

SIMD and MIMD
• Two principal parallel computing paradigms (multiple operands)

8

Instruction
Storage

Instruction
Unit

EU

Operand
Storage

EU EU EU...

Instruction
Storage

Instruction
Unit

Execution
Unit

Operand
Storage

Instruction
Storage

Instruction
Unit

Execution
Unit

Operand
Storage

Instruction
Storage

Instruction
Unit

Execution
Unit

Operand
Storage...

...

...

Single instruction
at a time

All execution
units execute in

(c)lock step

But each have
their own data

Multiple
instruction

EUs run
independently
(w own instrs)

Shared Memory
Not Shared

Coming
up next

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

A More Refined (Programmer-Oriented) Taxonomy
• Three major modes: SIMD, Shared Memory, Distributed Memory
• Different programming approaches are generally associated with

different modes of parallelism (threads for shared, MPI for distributed)
• A modern supercomputer will have all three major modes present

9

http://www.cise.ufl.edu/resea
rch/ParallelPatterns/PatternLa
nguage/Background/ParallelH
ardware.htm

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

SIMD in SSE/AVX
Instruction
Storage

Instruction
Unit

EU

Operand
Storage

EU EU EU...

Flynn’s original
conceptual model

0255 127 63191

ymm1

ymm2

+ + + +

ymm0

64 bits1x double

ymm are 256 bit
registers

vfadd231pd %ymm0, %ymm1, %ymm2

One machine
instruction

Adds all four doubles
simultaneously

10

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

SIMD in SSE/AVX
Instruction
Storage

Instruction
Unit

EU

Operand
Storage

EU EU EU...

Flynn’s original
conceptual model

ymm are 256 bit
registers

One machine
instruction

Adds all eight floats
simultaneously

0255 127 63191

ymm1

ymm2

+ + + +

ymm0

32 bits1x float

vfadd231ps %ymm0, %ymm1, %ymm2

11

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Multicore Architecture

12

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Multicore for HPC
• How do multicore chips operate (how does the hardware work)?
• How do they get high performance?
• How does the software exploit the hardware (how do we write our

software to exploit the hardware)?
• What are the abstractions that we need to use to reason about

multicore systems?
• What are the programming abstractions and mechanisms?
• Terminology: Program, process, thread
• More terminology: Parallel, concurrent, asynchronous

13

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Multicore Architecture

Instructions

Data

Fetch

Load/Store

... ...
Clock

cycle

I1
I2
I3

D1
D2

L2

L1
(I)

L1
(D)

Instructions

Data

Fetch

Load/Store

L2

L1
(I)

L1
(D)

Instructions

Data

Fetch

Load/Store

L3

F
D
R
E
W

r0
r1
r2
r3
r4
r5

F
D
R
E
W

r0
r1
r2
r3
r4
r5

Any CPU in the
last 4-5 yearsCore is a

FDREW + regs

Each runs its
own sequence
of instructions

Each can access
its own data

But memory
might be sharedEach has memory

hierarchy14

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Parallelization Example
• You are the TA for CSE 142 and have to grade

22 exams
• The exam has 8 questions on it
• It takes 3 minutes to grade one question

• How long will it take you to grade all of the
exams?

15

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Parallelization Example
• You are the TA for CSE 142 and have to grade 22

exams
• The exam has 8 questions on it
• It takes 3 minutes to grade one question
• You ask 21 friends who agree to help you

• How long will it take the 22 of you to grade all of the
exams?

• Describe your approach
• List your assumptions

16

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Parallelization Example
• You are the TA for CSE 142 and have to grade 1012

exams (1012 = 46 * 22)
• The exam has 8 questions on it
• It takes 3 minutes to grade one question
• You ask 21 friends who agree to help you

• How long will it take the 22 of you to grade all of the
exams?

• Describe your approach
• Describe another approach
• List your assumptions

17

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Parallelization Example
• You are the TA for CSE 142 and have to grade

8 exams
• The exam has 22 questions on it
• It takes 3 minutes to grade one question
• You ask 21 friends who agree to help you

• How long will it take the 22 of you to grade all
of the exams?

• Describe your approach

18

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Parallelization Example
• You are the TA for CSE 142 and have to grade

368 exams (368 = 46 * 8)
• The exam has 22 questions on it
• It takes 3 minutes to grade one question
• You ask 21 friends who agree to help you

• How long will it take the 22 of you to grade all
of the exams?

• What if you had 368 friends? 368*22?

19

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Compare And Contrast
• Time for everyone grades one exam
• Time for everyone grades one question

• How (why) did you use the approaches you did?

20

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

How Do We Run Many Programs at the Same Time?

21

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Running a Program

Fetch
Decode
R Read
Execute
R Write

Instructions

Data

Fetch

Load/Store... ...
Clock

cycle

I1
I2
I3

D1
D2

I2
I3

I1

I4

.globl __Z15hoistedMultiplyRK6MatrixS1_RS_

.p2align 4, 0x90
__Z15hoistedMultiplyRK6MatrixS1_RS_: ## @_Z15hoistedMultiplyRK6MatrixS1_RS_

.cfi_startproc
BB#0:

pushq %rbp
Ltmp16:

.cfi_def_cfa_offset 16
Ltmp17:

.cfi_offset %rbp, -16
movq %rsp, %rbp

Ltmp18:
.cfi_def_cfa_register %rbp
pushq %r15
pushq %r14
pushq %r13
pushq %r12
pushq %rbx

Ltmp19:
.cfi_offset %rbx, -56

Ltmp20:
.cfi_offset %r12, -48

Ltmp21:
.cfi_offset %r13, -40

Ltmp22:
.cfi_offset %r14, -32

Ltmp23:
.cfi_offset %r15, -24
movq (%rdi), %rax
movq %rax, -120(%rbp) ## 8-byte Spill

testq %rax, %rax
je LBB2_9

BB#1:

movq 8(%rsi), %rcx
testq %rcx, %rcx
je LBB2_9

BB#2:

movq 16(%rsi), %r12
movq 8(%rdx), %rax
movq %rax, -104(%rbp) ## 8-byte Spill

movq 16(%rdx), %rdx
movq 8(%rdi), %rax
movq 16(%rdi), %r13
leaq -1(%rcx), %rsi
movq %rsi, -88(%rbp) ## 8-byte Spill

movl %ecx, %esi

Bytes from program
stored in memoryWhen a CPU is

executing bytes from
one program

It isn’t executing
bytes from another

How did the
bytes get here?

How does another
program run?

Including from the OS
(just another program)

22

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

How Do We Run Many Programs at the Same Time?

23

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

A Word About Operating Systems
• An operating system is a program that provides a standard interface

between the resources of a computer and the users of the computer

Fetch
Decode
R Read
Execute
R Write

Instructions

Data

Fetch

Load/Store... ...
Clock

cycle

I1
I2
I3

D1
D2

I2
I3

I1

I4

Two of the most
important: CPU

and memory

Two of the most
important: CPU

and memory

Also, file system,
I/O, network, etc

For HPC, these are
the most imporant

24

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Processes and Threads
• A process is an abstraction for a collection of

resources to represent a (running) program
– CPU
– Memory
– Address space

• A thread is an abstraction of execution (using the
resources within a process)
– Can share an address space

25

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

How Do We Run Many Programs at the Same Time?How Do We Run Many Programs Concurrently?

Do not ever say: ”the
operating system stops

the first process and
starts the next

26

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

The Operating System Can Run When…
• The process whose instructions are being executed by the CPU (the

running process) requests a service from the OS (makes a system call)
• In response to a hardware interrupt
• It does not spontaneously run
• It is not somehow running in the background
• Again, when the CPU is executing instructions for one program, it is not

executing instructions for another program
• The only way anything happens on the computer is if the CPU executes

instructions that make it happen

27

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Process Abstraction

Set of information
about process

resources

Sufficient to be able
to start a process

after stopped

Also for accounting /
administrative

purposes

Stored in Process
Control Block (PCB

What does program
counter represent?

28

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

The Process Concept
$ top -u

Process ID

How
much CPU

How many
threads

29

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Process address space
Stack{Address

Space
Heap

Data

Text {Stored
Program

Created and
managed at run time

Created and
managed at run time

Compiled /
Linked

All 32/48/64 bits

Memory resources
for each process

How can each
process use all the

address space?

30

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Can have many
many processes
running “at the

same time

Process Lifetime

Ready Running

Waiting
New Terminated

Interrupt or
system call

Scheduler
dispatch

I/O or wait
event

I/O or event
completion

Admitted

exit

31

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Context Switch

Silberschatz, Galvin, Gagne

P0 and P1
are running
processes

What does
this mean?

And this?

External
to OS

External
to OS

PCB = Process
Control Block Expensive!

OS does
not do this

32

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Process Queues

A process control block (PCB)
has all information necessary

to manage a process

Restart exactly
where we left off

Program runs from
start to finish

Context switches
are not observable

33

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Process
invokes fork()

The OS makes a copy
of the original process
and makes it runnable

One of the processes
(the “child”) runs exec()

Which pulls in new
program bits to run

The other process (the
”parent) keeps executing

Can wait for other
process to complete

You see this fork/exec/wait almost all the time
with one particular program you run (which?)

34

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Example: process creation in UNIX
#include <unistd.h>

int main () {

fork();

return 0;
}

#include <unistd.h>

int main () {

fork();

return 0;
}

#include <unistd.h>

int main () {

fork();

return 0;
}

One process
calls fork()

Two processes
return from fork()

Two processes
return from fork()

fork() make an
exact copy

Each process “thinks”
it called fork() and

returned

35

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Example

int main() {
{

int pids[20];

for (int i = 0; i < 20; ++i) {
pids[i] = fork();

}

return 0;
}

fork() returns a
PID identifier

Loop 20 times

Call fork() 20
times

How many processes
get created?

36

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

i == 0

int main() {
{

int pids[20];

for (int i = 0; i < 20; ++i) {
pids[i] = fork();

}

return 0;
}

int main() {
{

int pids[20];

for (int i = 0; i < 20; ++i) {
pids[i] = fork();

}

return 0;
}

i == 1

int main() {
{

int pids[20];

for (int i = 0; i < 20; ++i) {
pids[i] = fork();

}

return 0;
}

int main() {
{

int pids[20];

for (int i = 0; i < 20; ++i) {
pids[i] = fork();

}

return 0;
}

int main() {
{

int pids[20];

for (int i = 0; i < 20; ++i) {
pids[i] = fork();

}

return 0;
}

int main() {
{

int pids[20];

for (int i = 0; i < 20; ++i) {
pids[i] = fork();

}

return 0;
}

Example int main() {
{

int pids[20];

for (int i = 0; i < 20; ++i) {
pids[i] = fork();

}

return 0;
}

i
=
=
2

How deep is
the tree?

How many
processes?Don’t do

this (ever)!

37

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

man fork()

The child process
has a unique id

#include <unistd.h>
pid_t fork();

Upon successful
completion, fork()

returns a value of 0
to the child process
and the returns the
process ID of the

child process to the
parent process

38

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Example Revisited

int main() {
{

pid_t pids[20];

for (int i = 0; i < 20; ++i) {
pids[i] = fork();
if (pids[i] == 0)

break;
}

return 0;
}

Get return
value of fork()

If zero, the
process is a child

If no, the process
is the parent,

keep going

How many
processes

now?

39

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Process creation in UNIX (fork / exec pattern)

while (true) {
cout << "$ ";
cin >> command;

pid_t child = fork();

if (0 == child) {
execv(command, NULL);

} else {
wait(child);

}
}

while (true) {
cout << "$ ";
cin >> command;

pid_t child = fork();

if (0 == child) {
execv(command, NULL);

} else {
wait(child);

}
}

40

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

How Do We Run Multiple Programs Concurrently?

41

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Multitasking

Fetch
Decode
R Read
Execute
R Write

Instructions

Data

Fetch

Load/Store... ...
Clock

cycle

I1
I2
I3

D1
D2

I2
I3

I1

I4

Task 1

Task 2
Task 0

Time

Task 1 Task 2Task 0

Task 1

Task 2
Task 0

Tasks (processes or
threads) can be

scheduled sequentially

Run to
completion

42

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Time

Multitasking

Fetch
Decode
R Read
Execute
R Write

Instructions

Data

Fetch

Load/Store... ...
Clock

cycle

I1
I2
I3

D1
D2

I2
I3

I1

I4

Task 1

Task 2
Task 0

Task 1

Task 2
Task 0

Tasks can be
scheduled round

robin (time sliced)

Run to context
switch (system

call or interrupt)

Concurrency!

43

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Multitasking on Multicore

Instructions

Data

Fetch

Load/Store

... ...
Clock

cycle

I1
I2
I3

D1
D2

L2

L1
(I)

L1
(D)

Instructions

Data

Fetch

Load/Store

L2

L1
(I)

L1
(D)

Instructions

Data

Fetch

Load/Store

L3

F
D
R
E
W

r0
r1
r2
r3
r4
r5

F
D
R
E
W

r0
r1
r2
r3
r4
r5

Time

Time sliced
and mapped to
separate cores

A single threaded
task can only use

one core at a time

Concurrency!

44

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Instructions

Data

Fetch

Load/Store

... ...
Clock

cycle

I1
I2
I3

D1
D2

L2

L1
(I)

L1
(D)

Instructions

Data

Fetch

Load/Store

L2

L1
(I)

L1
(D)

Instructions

Data

Fetch

Load/Store

L3

F
D
R
E
W

r0
r1
r2
r3
r4
r5

F
D
R
E
W

r0
r1
r2
r3
r4
r5

Multitasking on Multicore

Time

Time sliced
and mapped to
separate cores

A multithreaded task
can use multiple
cores at a time

Parallelism!

Shorter
run time!

Threads can
share memory

And L3 cache

What about L1, L2?

Access same
variables

45

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Instructions

Data

Fetch

Load/Store

... ...
Clock

cycle

I1
I2
I3

D1
D2

L2

L1
(I)

L1
(D)

Instructions

Data

Fetch

Load/Store

L2

L1
(I)

L1
(D)

Instructions

Data

Fetch

Load/Store

L3

F
D
R
E
W

r0
r1
r2
r3
r4
r5

F
D
R
E
W

r0
r1
r2
r3
r4
r5

Cache Coherence

Time

A multithreaded task
can use multiple
cores at a time

Threads can
share memory

Access same
variables

Same variable can be
in two different caches

What if one
gets modified?

Cache coherence /
memory consistency

Hardware
managed

46

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Instructions

Data

Fetch

Load/Store

... ...
Clock

cycle

I1
I2
I3

D1
D2

L2

L1
(I)

L1
(D)

Instructions

Data

Fetch

Load/Store

L2

L1
(I)

L1
(D)

Instructions

Data

Fetch

Load/Store

L3

F
D
R
E
W

r0
r1
r2
r3
r4
r5

F
D
R
E
W

r0
r1
r2
r3
r4
r5

Multitasking on Multicore Time

Time

Run one task In half the
time (?)

47

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Instructions

Data

Fetch

Load/Store

... ...
Clock

cycle

I1
I2
I3

D1
D2

L2

L1
(I)

L1
(D)

Instructions

Data

Fetch

Load/Store

L2

L1
(I)

L1
(D)

Instructions

Data

Fetch

Load/Store

L3

F
D
R
E
W

r0
r1
r2
r3
r4
r5

F
D
R
E
W

r0
r1
r2
r3
r4
r5

Multitasking on Multicore Time

Run one task

In ¼ the
time (?)

Time
48

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Instructions

Data

Fetch

Load/Store

... ...
Clock

cycle

I1
I2
I3

D1
D2

L2

L1
(I)

L1
(D)

Instructions

Data

Fetch

Load/Store

L2

L1
(I)

L1
(D)

Instructions

Data

Fetch

Load/Store

L3

F
D
R
E
W

r0
r1
r2
r3
r4
r5

F
D
R
E
W

r0
r1
r2
r3
r4
r5

Multitasking on Multicore

In 1/8 the
time (?)

Time

Need enough
cores (8)

Work needs to
be balanced

oops

Parallel computation isn’t
done until all cores are done

Nonetheless, this is the
essence of parallel computing

Not the same as
concurrent

49

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Instructions

Data

Fetch

Load/Store

... ...
Clock

cycle

I1
I2
I3

D1
D2

L2

L1
(I)

L1
(D)

Instructions

Data

Fetch

Load/Store

L2

L1
(I)

L1
(D)

Instructions

Data

Fetch

Load/Store

L3

F
D
R
E
W

r0
r1
r2
r3
r4
r5

F
D
R
E
W

r0
r1
r2
r3
r4
r5

Multitasking on Multicore

Time

This is the essence of
parallel computing

How do we
do this?

50

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Parallelization Strategy
Finding

Concurrency

Algorithm
Structure

Supporting
Structures

Implementation
MechanismsTimothy Mattson, Beverly Sanders, and Berna Massingill.

2004. Patterns for Parallel Programming(First ed.). Addison-
Wesley Professional.

51

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Finding Concurrency
Finding Concurrency

Dependency Analysis

Group Tasks

Order Tasks

Data Sharing

Design Evaluation

Decomposition

Data Decomposition

Task Decomposition

Algorithm
Structure

Supporting
Structures

Implementation
Mechanisms

Decompose problem into pieces
that can execute concurrently

Into tasks that can
execute concurrently

Units that can be operated
on (relatively) independently

52

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Finding Concurrency
Finding Concurrency

Dependency Analysis

Group Tasks

Order Tasks

Data Sharing

Design Evaluation

Decomposition

Data Decomposition

Task Decomposition

Algorithm
Structure

Supporting
Structures

Implementation
Mechanisms

Ways to group tasks to simplify
management of dependencies

Given a decomposition,
ways to share data

among tasks
Ways to order tasks for

correctness, other constraints

Ways to group tasks to simplify
management of dependencies

53

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Algorithm Structure

Algorithm Structure

Organize by Tasks

Divide and Conquer

Task Parallelism

Finding
Concurrency

Supporting
Structures

Implementation
Mechanisms

Organize by Data Decomposition

Recursive Data

Geometric Decomposition

Organize by Flow of Data

Event-Based Coordination

Pipeline

Fundamental
organizing principleOrganize around

concurrent tasks

Exploit potential
concurrency in divide

and conquer algorithms

54

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Algorithm Structure

Algorithm Structure

Organize by Tasks

Divide and Conquer

Task Parallelism

Finding
Concurrency

Supporting
Structures

Implementation
Mechanisms

Organize by Data Decomposition

Recursive Data

Geometric Decomposition

Organize by Flow of Data

Event-Based Coordination

Pipeline

Fundamental
organizing principle

Organize around a large
data structure that is
broken into “chunks”

Organize around operations
on recursive data structure

55

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Algorithm Structure

Algorithm Structure

Organize by Tasks

Divide and Conquer

Task Parallelism

Finding
Concurrency

Supporting
Structures

Implementation
Mechanisms

Organize by Data Decomposition

Recursive Data

Geometric Decomposition

Organize by Flow of Data

Event-Based Coordination

Pipeline

Fundamental
organizing principle

Organize by sequence
of independent stages

Organize by inherent
communication among tasks

56

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Supporting Structures

Supporting Structures

Program Structures

Manager/Worker

SPMD

Algorithm
Structure

Implementation
Mechanisms

Finding
Concurrency

Data Structures

Shared Queue

Shared Data

Loop Parallelism

Fork/Join

Distributed Array

Organize communication
and sharing between UEs

Centralized control
distributing tasks

Translate loop
bodies into tasks

Sets of
dynamic tasks

Explicitly manage
shared data

Safely share
a queue

Manage array
data partitioned

among UEs

57

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Implementation Mechanisms
Finding

Concurrency

Algorithm
Structure

Supporting
Structures

Implementation Mechanisms

UE Management Synchronization Communication

Manage task
lifetimes

Enforce ordering
constraints

Get data where it
needs to be when UEs
don’t share memory

58

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Stay Tuned
• C++ threads
• C++ async()
• C++ atomics

59

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Thank you!

60

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

© Andrew Lumsdaine, 2017-2019

Except where otherwise noted, this work is licensed under

https://creativecommons.org/licenses/by-nc-sa/4.0/

Creative Commons BY-NC-SA 4.0 License

61

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine62

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine63

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine64

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine65

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Parallel Computing with Processes

k
j

i

j

⇥=

i
k

k
j

i

j

⇥=

i
k

66

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Parallel Computing with Processes
k

j

i

j

⇥=

i
k

Process 0

Process 1

67

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Parallel Computing with Processes Process 0

Process 1

k
j

i

j

⇥=

i
k

k
j

j

i i
k

68

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Parallel Computing with Processes
k

j

i

j

⇥=

i
k

k
j

j

i i
k

for (int i = 0; i < A.numRows(); ++i) {
for (int j = 0; j < B.numCols(); ++j) {
for (int k = 0; k < A.numCols(); ++k) {

C(i,j) += A(i,k) * B(k,j);
}

}
}

for (int i = 0; i < A.numRows(); ++i) {
for (int j = 0; j < B.numCols(); ++j) {
for (int k = 0; k < A.numCols(); ++k) {

C(i,j) += A(i,k) * B(k,j);
}

}
}

for (int k = 0; k < A.numCols(); ++k) {
C(i,j) += A(i,k) * B(k,j);

}

Can’t index from
different process b/c

different address space

69

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

k
j

i

j

⇥=

i
k

Parallel Computing with One Process
for (int i = 0; i < A.numRows(); ++i) {

for (int j = 0; j < B.numCols(); ++j) {
for (int k = 0; k < A.numCols(); ++k) {

C(i,j) += A(i,k) * B(k,j);
}

}
}

for (int i = 0; i < A.numRows(); ++i) {
for (int j = 0; j < B.numCols(); ++j) {
for (int k = 0; k < A.numCols(); ++k) {

C(i,j) += A(i,k) * B(k,j);
}

}
}

70

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

k
j

i

j

⇥=

i
k

Parallel Computing with One Process

for (int i = 0; i < A.numRows(); ++i) {
for (int j = 0; j < B.numCols(); ++j) {
for (int k = 0; k < A.numCols(); ++k) {

C(i,j) += A(i,k) * B(k,j);
}

}
}

for (int i = 0; i < A.numRows(); ++i) {
for (int j = 0; j < B.numCols(); ++j) {
for (int k = 0; k < A.numCols(); ++k) {

C(i,j) += A(i,k) * B(k,j);
}

}
}

71

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

k
j

i

j

⇥=

i
k

Parallel Computing with One Process

for (int i = 0; i < A.numRows(); ++i) {
for (int j = 0; j < B.numCols(); ++j) {
for (int k = 0; k < A.numCols(); ++k) {

C(i,j) += A(i,k) * B(k,j);
}

}
}

for (int i = 0; i < A.numRows(); ++i) {
for (int j = 0; j < B.numCols(); ++j) {
for (int k = 0; k < A.numCols(); ++k) {

C(i,j) += A(i,k) * B(k,j);
}

}
}

72

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

k
j

i

j

⇥=

i
k

Parallel Computing with One Process

for (int i = 0; i < A.numRows(); ++i) {
for (int j = 0; j < B.numCols(); ++j) {
for (int k = 0; k < A.numCols(); ++k) {

C(i,j) += A(i,k) * B(k,j);
}

}
}

for (int i = 0; i < A.numRows(); ++i) {
for (int j = 0; j < B.numCols(); ++j) {
for (int k = 0; k < A.numCols(); ++k) {

C(i,j) += A(i,k) * B(k,j);
}

}
}

for (int i = 0; i < A.numRows()/2; ++i) {
for (int j = 0; j < B.numCols(); ++j) {
for (int k = 0; k < A.numCols()/2; ++k) {

C(i,j) += A(i,k) * B(k,j);
}

}
}

73

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

k
j

i

j

⇥=

i
k

Parallel Computing with One Process

for (int i = 0; i < A.numRows(); ++i) {
for (int j = 0; j < B.numCols(); ++j) {
for (int k = 0; k < A.numCols(); ++k) {

C(i,j) += A(i,k) * B(k,j);
}

}
}

for (int i = 0; i < A.numRows()/2; ++i) {
for (int j = 0; j < B.numCols(); ++j) {
for (int k = 0; k < A.numCols()/2; ++k) {

C(i,j) += A(i,k) * B(k,j);
}

}
}

for (int i = A.numRows()/2; i < A.numRows(); ++i) {
for (int j = 0; j < B.numCols(); ++j) {
for (int k = A.numCols()/2; k < A.numCols(); ++k) {
C(i,j) += A(i,k) * B(k,j);

}
}

}

74

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Use Same Function in Both Cases

for (int i = iStart; i < iStart + A.numRows()/2; ++i) {
for (int j = 0; j < B.numCols(); ++j) {
for (int k = kStart; k < kStart + A.numCols()/; ++k) {
C(i,j) += A(i,k) * B(k,j);

}
}

}

k
j

i

j

⇥=

i
k

Still need
to run two
separate
instances

Need to run
them in

parallel to
get improved
performance

75

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

for (int i = iStart; i < iStart + A.numRows()/2; ++i) {
for (int j = 0; j < B.numCols(); ++j) {

for (int k = kStart; k < kStart + A.numCols()/2; ++k) {
C(i,j) += A(i,k) * B(k,j);

}
}

}

for (int i = iStart; i < iStart + A.numRows()/2; ++i) {
for (int j = 0; j < B.numCols(); ++j) {

for (int k = kStart; k < kStart + A.numCols()/2; ++k) {
C(i,j) += A(i,k) * B(k,j);

}
}

}

Use Same Function in Both Cases
k

j

i

j

⇥=

i
k

Run this

Then this

int iStart = 0;
int kStart = 0;

int iStart = A.numRows()/2;
int kStart = A.numCols()/2;

Improved
performance?

76

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

for (int i = iStart; i < iStart + A.numRows()/2; ++i) {
for (int j = 0; j < B.numCols(); ++j) {

for (int k = kStart; k < kStart + A.numCols()/2; ++k) {
C(i,j) += A(i,k) * B(k,j);

}
}

}

for (int i = iStart; i < iStart + A.numRows()/2; ++i) {
for (int j = 0; j < B.numCols(); ++j) {

for (int k = kStart; k < kStart + A.numCols()/2; ++k) {
C(i,j) += A(i,k) * B(k,j);

}
}

}

Use Same Function in Both Cases
k

j

i

j

⇥=

i
k

Run this

int iStart = 0;
int kStart = 0;

int iStart = A.numRows()/2;
int kStart = A.numCols()/2;

And this

At the
same time

2X faster
(?)

77

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Some Terminology

Parallel Distributed

Concurrent
Order of

operations
doesn’t
matter

In separate
address
spaces

(memory)
Operations

occur at
the same

time

Connotation
of “tight

coupling”

Connotation
of “loose
coupling”

78

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Running Things “At the Same Time”
• Historically, threads evolved as a concurrency mechanism, not

parallelism
• Enabled OS and processes to do multiple things “at the same time”
• Can be used for performance if threads are executed in parallel

79

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Running Things “At the Same Time” in C++
#include <iostream>
#include <thread>
using namespace std;

void sayHello() {

cout << "Hello World" << endl;

}

int main() {

thread helloThread(sayHello);

helloThread.join();

return 0;

}

Pull in thread
library

Create a
thread

That runs this
function

Simple
function

Join back to
main thread

80

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Multithreading
void sayHello(int tnum) {

cout << "Hello World. I am thread " << tnum << endl;

}

int main() {

std::thread tid[16];

for (int i = 0; i < 16; ++i)

tid[i] = thread (sayHello, i);

for (int i = 0; i < 16; ++i)

tid[i].join();

return 0;

}

81

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Multithreading
void sayHello(int tnum) {

cout << "Hello World. I am thread " << tnum << endl;

}

int main() {

std::thread tid[16];

for (int i = 0; i < 16; ++i)

tid[i] = thread (sayHello, i);

for (int i = 0; i < 16; ++i)

tid[i].join();

return 0;

}

$./a.out
Hello World. I am thread Hello World. I am thread Hello
World. I am thread Hello World. I am thread Hello World. I
am thread Hello World. I am thread Hello World. I am
thread Hello World. I am thread Hello World. I am thread
02Hello World. I am thread Hello World. I am thread 13Hello
World. I am thread 5Hello World. I am thread Hello World. I
am thread 6Hello World. I am thread 47Hello World. I am
thread 8

910

111213
14

15

Program
output

Concurrency?

Parallelism?

82

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Multithreading
main()

sayHello()sayHello()sayHello()

Call thread
constructor

Run in separate
thread

Run in separate
thread

Run in separate
thread

Join

83

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Why the Jumbled Output
void sayHello(int tnum) {

cout << "Hello World. I am thread " << tnum << endl;

}

int main() {

std::thread tid[16];

for (int i = 0; i < 16; ++i)

tid[i] = thread (sayHello, i);

for (int i = 0; i < 16; ++i)

tid[i].join();

return 0;

}

$./a.out
Hello World. I am thread Hello World. I am thread Hello
World. I am thread Hello World. I am thread Hello World. I
am thread Hello World. I am thread Hello World. I am
thread Hello World. I am thread Hello World. I am thread
02Hello World. I am thread Hello World. I am thread 13Hello
World. I am thread 5Hello World. I am thread Hello World. I
am thread 6Hello World. I am thread 47Hello World. I am
thread 8

910

111213
14

15

Concurrency!

84

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Another Example
int value = 0;

void sayHello(int tnum) {

int v = value;

cout << "Hello World. I am thread " << tnum << "Value is " << v << endl;

value = v+1;

}

int main() {

std::thread tid[16];

for (int i = 0; i < 16; ++i)

tid[i] = thread (sayHello, i);

for (int i = 0; i < 16; ++i)

tid[i].join();

cout << "Final value is " << value << endl;

return 0;

}

int value = 0;

void sayHello(int tnum) {

int v = value;

cout << "Hello World. I am thread " << tnum << "Value is " << v << endl;

value = v+1;

}

int value = 0;

int main() {

std::thread tid[16];

for (int i = 0; i < 16; ++i)

tid[i] = thread (sayHello, i);

for (int i = 0; i < 16; ++i)

tid[i].join();

cout << "Final value is " << value << endl;

return 0;

}

85

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Example
./a.outHello World. I am thread Hello World. I am thread Hello World. I
am thread Hello World. I am thread Hello World. I am thread Hello
World. I am thread Hello World. I am thread Hello World. I am thread
Hello World. I am thread Hello World. I am thread 5302Hello World. I
am thread Hello World. I am thread 64Hello World. I am thread Hello
World. I am thread 1Hello World. I am thread 789Value is Value is Value
is Hello World. I am thread Value is 1011Value is Value is 1213Value is
14Value is Value is Value is 000150Value is Value is 00Value is Value is
0Value is 000Value is 000000

Final value is 1 Not Good! Race condition

86

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Yet Another Example (Sequential, Synchronous)
int bank_balance = 300;

void withdraw(const string& msg, int amount) {
int bal = bank_balance;
string out_string = msg + " withdraws " + to_string(amount) + "\n";
cout << out_string;
bank_balance = bal - amount;

}

int main() {
cout << "Starting balance is " << bank_balance << endl;

withdraw("Bonnie", 100);
withdraw("Clyde", 100);

cout << "Final bank balance is " << bank_balance << endl;

return 0;
}

87

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Yet Another Example (Concurrent)
int bank_balance = 300;

void withdraw(const string& msg, int amount) {
int bal = bank_balance;
string out_string = msg + " withdraws " + to_string(amount) + "\n";
cout << out_string;
bank_balance = bal - amount;

}

int main() {
cout << "Starting balance is " << bank_balance << endl;

thread bonnie(withdraw, "Bonnie", 100);
thread clyde(withdraw, "Clyde", 100);

bonnie.join();
clyde.join();

cout << "Final bank balance is " << bank_balance << endl;

return 0;
}

88

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Review
• Process is an abstraction for resource allocation
• Thread is an abstraction for execution
• Concurrency vs Parallelism vs Distributed
• C++ threading library

89

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Thank You!

90

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Example
• Find the value of

• Using formula

⇡

⇡ =

Z 1

0

4

1 + x2
dx

91

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Discretization

h

92

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

0 1 2 3 … i i+1 … N-1
h

Numerical Quadrature

93

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

0 1 2 3 … i i+1 … N-1
h

Numerical Quadrature

4

1 + x(i)2
=

4

1 + (ih)2

A = h
4

1 + (ih)2

94

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

0 1 2 3 … i i+1 … N-1
h

Numerical Quadrature

⇡ ⇡ h
N�1X

i=0

4

1 + (ih)2

95

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

0 1 2 3 … i i+1 … N-1
h

Numerical Quadrature

double pi = 0;
for (int i = 0; i < N; ++i) {

pi += h * 4.0 / (1 + i*h*i*h);
}

96

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Finding Concurrency
Finding Concurrency

Dependency Analysis

Group Tasks

Order Tasks

Data Sharing

Design Evaluation

Decomposition

Data Decomposition

Task Decomposition

Algorithm
Structure

Supporting
Structures

Implementation
Mechanisms97

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Finding Concurrency

0 1 2 3 … i i+1 … N-1

Partial sums are
all independent

Can be computed
concurrently

98

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Finding Concurrency

0 1 2 3 … i i+1 … N-1

⇡ ⇡ h
k<MX

k=0

2

4
i<(k+1)NX

i=kN

4

1 + (ih)2

3

5

Sum over
partial sums Partial sum

99

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Finding Concurrency
Finding Concurrency

Dependency Analysis

Group Tasks

Order Tasks

Data Sharing

Design Evaluation

Decomposition

Data Decomposition

Task Decomposition

Algorithm
Structure

Supporting
Structures

Implementation
Mechanisms

Decompose total
sum into a sum of

partial sums Each task can be
computed

concurrently

Need to sum up
independent
partial sums

100

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Algorithm Structure

Algorithm Structure

Organize by Tasks

Divide and Conquer

Task Parallelism

Finding
Concurrency

Supporting
Structures

Implementation
Mechanisms

Organize by Data Decomposition

Recursive Data

Geometric Decomposition

Organize by Flow of Data

Event-Based Coordination

Pipeline

Partial sums are
independent tasks

Can be executed
in parallel

101

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Supporting Structures

Supporting Structures

Program Structures

Manager/Worker

SPMD

Algorithm
Structure

Implementation
Mechanisms

Finding
Concurrency

Data Structures

Shared Queue

Shared Data

Loop Parallelism

Fork/Join

Distributed Array

Translate loop
bodies into tasks

Global sum (may or
may not be shared)

102

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Implementation Mechanisms
Finding

Concurrency

Algorithm
Structure

Supporting
Structures

Implementation Mechanisms

UE Management Synchronization Communication

Use C++
async

No ordering
constraints

Use shared memory

103

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

double h = 1.0 / (double) intervals;

double pi = 0.0;
for (int k = 0; k < intervals; k += blocksize) {
double partial_pi = 0.0;
for (int i = k; i < (k+blocksize); ++i) {

partial_pi += 4.0 / (1.0 + (i*h*i*h));
}
pi += h * partial_pi;

}

Sequential Implementation (Two Nested Loops)

Discretization

For each set
of discretized

points

Compute
partial sum

Accumulate
final sum

104

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Threads vs Tasks
void sayHello(int tnum) {

cout << "Hello World. I am thread " << tnum << endl;

}

int main() {

std::thread tid[16];

for (int i = 0; i < 16; ++i)

tid[i] = thread (sayHello, i);

for (int i = 0; i < 16; ++i)

tid[i].join();

return 0;

}

Task

Launch
threads

Wait for tasks
to finish

“fork”

“join”

105

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Threads void partial_pi(unsigned long begin, unsigned long end) {
double partial_pi = 0.0;
for (unsigned long i = begin; i < end; ++i) {
partial_pi += 4.0 / (1.0 + (i*h*i*h));

}
return partial_pi;

}

int
main(int argc, char *argv[])
{

double h = 1.0 / (double) intervals;

double pi = 0.0;
for (int k = 0; k < intervals; k += blocksize) {

pi += h * partial_pi;
}
std::cout << "pi is approximately " << pi << std::endl;

return 0;
}

Oops

Thread
returns void

How do we update
global total?

How do we get
partial sums?

106

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Threads void partial_pi(unsigned long begin, unsigned long end, double h, double& pi) {
double partial_pi = 0.0;
for (unsigned long i = begin; i < end; ++i) {
partial_pi += 4.0 / (1.0 + (i*h*i*h));

}
pi += h*partial_pi;

}

int
main(int argc, char *argv[])
{

std::vector<std::thread> threads;

double h = 1.0 / (double) intervals;

double pi = 0.0;
for (unsigned long k = 0; k < num_blocks; ++k) {
threads.push_back(std::thread(partial_pi,

k*blocksize, (k+1)*blocksize, h, std::ref(pi)));
}

for (unsigned long k = 0; k < num_blocks; ++k) {
threads[k].join();

}
std::cout << "pi is approximately " << pi << std::endl;

return 0;
}

Task

Assign task
to thread

107

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Threads

void partial_pi(unsigned long begin, unsigned long end, double h, double& pi) {
double partial_pi = 0.0;
for (unsigned long i = begin; i < end; ++i) {
partial_pi += 4.0 / (1.0 + (i*h*i*h));

}
pi += h*partial_pi;

}

Shared
variable

Local
variable

Update shared
variable

108

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Threads
int main(int argc, char *argv[]) {

double h = 1.0 / (double) intervals;

std::vector<std::thread> threads;

double pi = 0.0;
for (unsigned long k = 0; k < num_blocks; ++k) {
threads.push_back(

std::thread(
partial_pi, k*blocksize, (k+1)*blocksize, h, std::ref(pi)));

}

for (unsigned long k = 0; k < num_blocks; ++k) {
threads[k].join();

}
std::cout << "pi is approximately " << pi << std::endl;

return 0;
}

Container for
created threads

Thread
constructor

Function that
will be the task

Arguments to
the function

Have to explicitly
tag this as a

reference

We are invoking
std::thread, not

partial pi109

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Results

$./thrpi
pi is approximately 3.14159

$./thrpi
pi is approximately 3.14159

$./thrpi
pi is approximately 2.69322

Correct

Correct

Incorrect!

Exactly same
program!

What
happened?

110

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Name This Famous Couple

Clyde Barrow

Bonnie Parker

111

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Bonnie and Clyde Use ATMs
int bank_balance = 300;

void withdraw(const string& msg, int amount) {
int bal = bank_balance;
string out_string = msg + " withdraws " + to_string(amount) + "\n";
cout << out_string;
bank_balance = bal - amount;

}

int main() {
cout << "Starting balance is " << bank_balance << endl;

thread bonnie(withdraw, "Bonnie", 100);
thread clyde(withdraw, "Clyde", 100);

bonnie.join();
clyde.join();

cout << "Final bank balance is " << bank_balance << endl;

return 0;
}

112

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Withdraw Function

int bank_balance = 300;

void withdraw(const string& msg, int amount) {
int bal = bank_balance;
string out_string = msg + " withdraws " + to_string(amount) + "\n";
cout << out_string;
bank_balance = bal - amount;

}

Get balance

Compute the
new balanceSave new

balance

113

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Making Concurrent Withdrawals
int main() {

cout << "Starting balance is " << bank_balance << endl;

thread bonnie(withdraw, "Bonnie", 100);
thread clyde(withdraw, "Clyde", 100);

bonnie.join();
clyde.join();

cout << "Final bank balance is " << bank_balance << endl;

return 0;
}

Launch
threads

Constructor

Run withdraw
function

Wait for
completion

114

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Bonnie and Clyde Use ATMs
$./a.out
Starting balance is 300
Bonnie withdraws 100
Clyde withdraws 100
Final bank balance is 200

Is this
correct?

115

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

What Happened?
void withdraw(const string& msg, int amount) {
int bal = bank_balance;
string out_s = msg + " withdraws " + to_string(amt) + "\n";

cout << out_s;
bank_balance = bal - amount;

}

void withdraw(const string& msg, int amount) {
int bal = bank_balance;
string out_s = msg + " withdraws " + to_string(amt) + "\n";

cout << out_s;
bank_balance = bal - amount;

}

Bonnie’s thread,
bal = 300

Clyde’s thread,
bal = 300

Context switch

Context switch

bank_balance
gets 200

bal is still 300

bal is still 300

bank_balance
gets 200

Profit!

116

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

What Happened: Race Condition
• Final answer depends on instructions from different threads are

interleaved with each other
• Often occurs with shared writing of shared data
• Often due to read then update shared data
• What was true at the read is not true at the update

117

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Critical Section Problem
int bank_balance = 300;

void withdraw(const string& msg, int amount) {
int bal = bank_balance;
string out_string = msg + " withdraws " + to_string(amount) + "\n";
cout << out_string;
bank_balance = bal - amount;

}

We want to tell
operating system not to
run anything else here

When some thread is executing
this critical section, no other

thread may execute it

118

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

The Critical-Section Problem
• n processes all competing to use some shared data
• Each process has a code segment, called critical section, in which the

shared data is accessed.
• Problem – ensure that when one process is executing in its critical

section, no other process is allowed to execute in its critical section.
• What do we mean by “execute in its critical section”?

119

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Solution to Critical-Section Problem
• Mutual Exclusion - If process Pi is executing in its critical section,

then no other processes can be executing in their critical sections
• Progress - If no process is executing in its critical section and there

exist some processes that wish to enter their critical section, then the
selection of the processes that will enter the critical section next
cannot be postponed indefinitely

• Bounded Waiting - A bound must exist on the number of times that
other processes are allowed to enter their critical sections after a
process has made a request to enter its critical section and before
that request is granted
– Assume that each process executes at a nonzero speed
– No assumption concerning relative speed of the N processes

120

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Critical Section Problem
int bank_balance = 300;

void withdraw(const string& msg, int amount) {
int bal = bank_balance;
string out_string = msg + " withdraws " + to_string(amount) + "\n";
cout << out_string;
bank_balance = bal - amount;

}

This is a critical section Let’s just think about
mutual exclusion for now

121

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Critical Section Problem
bool lock = false;

int bank_balance = 300;

void withdraw(const string& msg, int amount) {
while (lock == true)
;

lock = true;

int bal = bank_balance;
string out_string = msg + " withdraws " + to_string(amount) + "\n";
cout << out_string;
bank_balance = bal - amount;

lock = false;
}

Test if another
thread is holding

the lock

Spin if it is

Fall through when lock == false

Take the lock

Execute
critical
section

Release lock

122

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Aside
bool lock = false;

int bank_balance = 300;

void withdraw(const string& msg, int amount) {

string out_string = msg + " withdraws " + to_string(amount) + "\n";
cout << out_string;
bank_balance -= amount;

}

Still a race

123

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Aside
bool lock = false;

int bank_balance = 300;

void withdraw(const string& msg, int amount) {

string out_string = msg + " withdraws " + to_string(amount) + "\n";
cout << out_string;
bank_balance = bank_balance - amount;

}

Still a race Read Compute

Then write

124

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

bool lock = false;

int bank_balance = 300;

void withdraw(const string& msg, int amount) {

string out_string = msg + " withdraws " + to_string(amount) + "\n";
cout << out_string;

bank_balance = bank_balance - amount;

}

Critical Section Problem

Critical
section

125

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

bool lock = false;

int bank_balance = 300;

void withdraw(const string& msg, int amount) {

string out_string = msg + " withdraws " + to_string(amount) + "\n";
cout << out_string;

while (lock == true)
;

lock = true;

bank_balance = bank_balance - amount;

lock = false;
}

Solution (?)
Test if another

thread is holding
the lock

Spin if it is

Fall through when lock == false

Take the lock

Execute
critical
section

Release lock

126

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

bool lock = false;

int bank_balance = 300;

void withdraw(const string& msg, int amount) {

string out_string = msg + " withdraws " + to_string(amount) + "\n";
cout << out_string;

while (lock == true)
;

lock = true;

bank_balance = bank_balance - amount;

lock = false;
}

Solution (?)
Test if another

thread is holding
the lock

Spin if it is

Fall through when lock == false

Common
pattern (when

correct)

Take the lock

Lock might be
taken between the

test and the set We’ve traded one
critical section

problem for another
127

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Synchronization Hardware
• Many systems provide hardware support for critical section code
• Uniprocessors – could disable interrupts

– Currently running code would execute without preemption
– Generally too inefficient on multiprocessor systems

• Operating systems using this not broadly scalable

• Modern machines provide special atomic hardware instructions
• Atomic = non-interruptable

– Either test memory word and set value
– Or swap contents of two memory words

128

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Test and Set
bool TestAndSet (bool& target)
{

bool rv = target;
target = TRUE;
return rv:

}

bool TestAndSet (bool *target)
{

bool rv = *target;
*target = TRUE;
return rv:

}

These are the
semantics, not the

implementation

Implemented in
hardware as an

invisible instruction

129

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Compare And Swap
void CompareAndSwap (bool *a, bool *b)
{

bool temp = *a;
*a = *b;
*b = temp:

}

void CompareAndSwap (bool& a, bool& b)
{

bool temp = a;
a = b;
b = temp:

}

These are the
semantics, not the

implementation

Implemented in
hardware as an

invisible instruction

130

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Correct Withdraw
int bank_balance = 300;
bool lock = false;

void withdraw(const string& msg, int amount) {
string out_s = msg + " withdraws " + to_string(amt) + "\n";
cout << out_s;

while (TestAndSet(lock) == true)
;

bank_balance -= amount;

lock = false;
}

Spin while the value is
true (another thread

holds the lock)

Under what
condition will

we fall through?

What is the
state of the

lock? Release the lock

131

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Correct Withdraw
int bank_balance = 300;
bool lock = false;

void withdraw(const string& msg, int amount) {
string out_s = msg + " withdraws " + to_string(amt) + "\n";
cout << out_s;

while (TestAndSet(lock) == true)
;

bank_balance -= amount;

lock = false;
}

”Spin lock”
(common pattern)

What is the
CPU doing?

How is it
affecting other

threads?
Is this a good
programming
abstraction?

132

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Parallel Speedup, Parallel Efficiency

S(p) =
T (n, 1)

T (n, p)

Speedup on p
processing units

Time to run problem
size n on one PU

Time to run problem
size n on p PUs

Efficiency on p
processing units

Ideal parallel
execution time

Divided by
actual parallel
execution time

E(p) =
T (n, 1)/p

T (n, p)
=

T (n, 1)/T (n, p)

p
=

S(p)

p

133

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Scaling Superlinear
(fishy)

Sublinear (typical)

Linear (ideal)

134

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Name This Famous Person
"Validity of the single processor approach to

achieving large-scale computing capabilities,”
AFIPS Conference Proceedings (30): 483–485,
1967.

Gene Amdahl (1922-2015)

Amdahl’s Law

135

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Limits to Parallelism (Amdahls’s Law)
T (n, 1)

↵T (n, 1) (1� ↵)T (n, 1)

Sequential
execution timeInherently

sequential

Perfectly
parallelizable

T (n, 1) = ↵T (n, 1) + (1� ↵)T (n, 1)

Inherently
sequential

Perfectly
parallelizable

T (n, p) = ↵T (n, 1) + 1
p (1� ↵)T (n, 1)

= T (n, 1)(↵+ 1
p (1� ↵)) Ideal speedup (for

parallelizable portion)Sequential
portion

136

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Limits to Parallelism (Amdahls’s Law)
T (n, 1)

↵T (n, 1) (1� ↵)T (n, 1)

Sequential
execution timeInherently

sequential

Perfectly
parallelizableS(p) =

T (n, 1)

T (n, p)
=

T (n, 1)

T (n, 1)[↵+ 1
p (1� ↵)]

=
1

↵+ 1
p (1� ↵)

 1

↵
lim
p!1

S(p) =
1

↵

Speedup

137

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

↵T (n, 1) (1� ↵)T (n, 1)

T (n, p)|p!1

T (n, 1)

Limits to Parallelism (Amdahls’s Law)
Inherently
sequential

Perfectly
parallelizable

lim
p!1

S(p) =
1

↵

S(p) =
T (n, 1)

T (n, p)

Speedup is the
ratio of thisTo this

138

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Limits to Parallelism (Amdahl’s Law)

Asymptotically
approaches 20

↵ = 0.05

139

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Limits to Parallelism

↵ = 0.01

Asymptotically
approaches 100

On 1024 cores

Not scalable

No matter how
many cores added

Exascale machines might
have millions of cores

140

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

There are no Limits (Gustafson’s Law)
• Doing the same problem faster and faster is not how we

use parallel computers
• Rather, we solve bigger and more difficult problems
• I.e., the amount of parallelizable work grows

CC BY-SA 3.0, https://en.wikipedia.org/w/index.php?curid=17451775

↵T (n, 1) p(1� ↵)T (n, 1)

T (n, p) = T (n, 1)

141

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

S(p) = ↵T (n,1)+p(1�↵)T (n,1)
T (n,p) = ↵T (n,1)+p(1�↵)T (n,1)

T (n,1) = ↵+ p(1� ↵)

E(p) = S(p)
p

↵T (n, 1) p(1� ↵)T (n, 1)

T (n, p) = T (n, 1)

There are no Limits (Gustafson’s Law) Perfectly
parallelizable

Parallel
performance Ratio of non sped

up to sped up

lim
p!1

E(p) = (1� ↵)

142

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Two Types of Scaling
Ideal

Strong scaling
Amdahl

Weak scaling
Gustafson

Not scalable

Scalable

143

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Multicore Architecture

Instructions

Data

Fetch

Load/Store

... ...
Clock

cycle

I1
I2
I3

D1
D2

L2

L1
(I)

L1
(D)

Instructions

Data

Fetch

Load/Store

L2

L1
(I)

L1
(D)

Instructions

Data

Fetch

Load/Store

L3

F
D
R
E
W

r0
r1
r2
r3
r4
r5

F
D
R
E
W

r0
r1
r2
r3
r4
r5

Any CPU in the
last 4-5 yearsCore is a

FDREW + regs

Each runs its
own sequence
of instructions

Each can access
its own data

But memory
might be sharedEach has memory

hierarchy144

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Running a Program

Fetch
Decode
R Read
Execute
R Write

Instructions

Data

Fetch

Load/Store... ...
Clock

cycle

I1
I2
I3

D1
D2

I2
I3

I1

I4

.globl __Z15hoistedMultiplyRK6MatrixS1_RS_

.p2align 4, 0x90
__Z15hoistedMultiplyRK6MatrixS1_RS_: ## @_Z15hoistedMultiplyRK6MatrixS1_RS_

.cfi_startproc
BB#0:

pushq %rbp
Ltmp16:

.cfi_def_cfa_offset 16
Ltmp17:

.cfi_offset %rbp, -16
movq %rsp, %rbp

Ltmp18:
.cfi_def_cfa_register %rbp
pushq %r15
pushq %r14
pushq %r13
pushq %r12
pushq %rbx

Ltmp19:
.cfi_offset %rbx, -56

Ltmp20:
.cfi_offset %r12, -48

Ltmp21:
.cfi_offset %r13, -40

Ltmp22:
.cfi_offset %r14, -32

Ltmp23:
.cfi_offset %r15, -24
movq (%rdi), %rax
movq %rax, -120(%rbp) ## 8-byte Spill

testq %rax, %rax
je LBB2_9

BB#1:

movq 8(%rsi), %rcx
testq %rcx, %rcx
je LBB2_9

BB#2:

movq 16(%rsi), %r12
movq 8(%rdx), %rax
movq %rax, -104(%rbp) ## 8-byte Spill

movq 16(%rdx), %rdx
movq 8(%rdi), %rax
movq 16(%rdi), %r13
leaq -1(%rcx), %rsi
movq %rsi, -88(%rbp) ## 8-byte Spill

movl %ecx, %esi

Bytes from program
stored in memoryWhen a CPU is

executing bytes from
one program

It isn’t executing
bytes from another

How did the
bytes get here?

How does another
program run?

Including from the OS
(just another program)

145

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Multicore Architecture

Instructions

Data

Fetch

Load/Store

... ...
Clock

cycle

I1
I2
I3

D1
D2

L2

L1
(I)

L1
(D)

Instructions

Data

Fetch

Load/Store

L2

L1
(I)

L1
(D)

Instructions

Data

Fetch

Load/Store

L3

F
D
R
E
W

r0
r1
r2
r3
r4
r5

F
D
R
E
W

r0
r1
r2
r3
r4
r5

.globl __Z15hoistedMultiplyRK6MatrixS1_RS_

.p2align 4, 0x90
__Z15hoistedMultiplyRK6MatrixS1_RS_: ## @_Z15hoistedMultiplyRK6MatrixS1_RS_

.cfi_startproc
BB#0:

pushq %rbp
Ltmp16:

.cfi_def_cfa_offset 16
Ltmp17:

.cfi_offset %rbp, -16
movq %rsp, %rbp

Ltmp18:
.cfi_def_cfa_register %rbp
pushq %r15
pushq %r14
pushq %r13
pushq %r12
pushq %rbx

Ltmp19:
.cfi_offset %rbx, -56

Ltmp20:
.cfi_offset %r12, -48

Ltmp21:
.cfi_offset %r13, -40

Ltmp22:
.cfi_offset %r14, -32

Ltmp23:
.cfi_offset %r15, -24
movq (%rdi), %rax
movq %rax, -120(%rbp) ## 8-byte Spill

testq %rax, %rax
je LBB2_9

BB#1:

movq 8(%rsi), %rcx
testq %rcx, %rcx
je LBB2_9

BB#2:

movq 16(%rsi), %r12
movq 8(%rdx), %rax
movq %rax, -104(%rbp) ## 8-byte Spill

movq 16(%rdx), %rdx
movq 8(%rdi), %rax
movq 16(%rdi), %r13
leaq -1(%rcx), %rsi
movq %rsi, -88(%rbp) ## 8-byte Spill

movl %ecx, %esi

.globl __Z15hoistedMultiplyRK6MatrixS1_RS_

.p2align 4, 0x90
__Z15hoistedMultiplyRK6MatrixS1_RS_: ## @_Z15hoistedMultiplyRK6MatrixS1_RS_

.cfi_startproc
BB#0:

pushq %rbp
Ltmp16:

.cfi_def_cfa_offset 16
Ltmp17:

.cfi_offset %rbp, -16
movq %rsp, %rbp

Ltmp18:
.cfi_def_cfa_register %rbp
pushq %r15
pushq %r14
pushq %r13
pushq %r12
pushq %rbx

Ltmp19:
.cfi_offset %rbx, -56

Ltmp20:
.cfi_offset %r12, -48

Ltmp21:
.cfi_offset %r13, -40

Ltmp22:
.cfi_offset %r14, -32

Ltmp23:
.cfi_offset %r15, -24
movq (%rdi), %rax
movq %rax, -120(%rbp) ## 8-byte Spill

testq %rax, %rax
je LBB2_9

BB#1:

movq 8(%rsi), %rcx
testq %rcx, %rcx
je LBB2_9

BB#2:

movq 16(%rsi), %r12
movq 8(%rdx), %rax
movq %rax, -104(%rbp) ## 8-byte Spill

movq 16(%rdx), %rdx
movq 8(%rdi), %rax
movq 16(%rdi), %r13
leaq -1(%rcx), %rsi
movq %rsi, -88(%rbp) ## 8-byte Spill

movl %ecx, %esi

Cores are a
resource

managed by
the OS

A process may
use one or
more cores

Memory is not
shared between

processes
146

