NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583
High Performance Scientific Computing

Lecture 10:
Processes, Threads, Concurrency, Parallelism

Andrew Lumsdaine

Northwest Institute for Advanced Computing
Pacific Northwest National Laboratory
University of Washington

Seattle, WA

Overview

« Multiple cores

« Concurrency

* Processes

« Threads

« Parallelization strategies
« Correctness

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : k ,:M,,,MR - | _UNIVERSITY,
University of Washington by Andrew Lumsdaine / el b

Supercomputers (HPC)

7

=
>
i
o
S
5
3
3
3
3

Pacific Northwest
NATION,

NORTHWEST INSTITUTE for ADVANCED COMPUTING
O SO UNIVERSITY of

AMATH 483/583 High-Performance Scientific Computing Spring 2019 ; - SR
University of Washington by Andrew Lumsdaine /

Schematically

Put sockets
on a blade

Put blades
in a chassis

Put chassis
in a rack

Put racks in
a center

Put centers
in the cloud

AN

AN

N

N\

ErECl-
El
3

L2

ERECR

/0
Devices

H
ERECER;

- — P
Devices

110
Devices

[+
El
3

EREC

H
2

[4e)
Devices

NORTHWEST INSTITUTE for ADVANCED COMPUTING

Pacific Northwest
NAT RATORY

UNIVERSITY of

AMATH 483/583 High-Performance Scientific Computing Spring 2019 SR

University of Washington by Andrew Lumsdaine

Parallelism and HPC so far
CLLLLLLLL SIMD (vector) parallelism:

i | Feten T Multiple operands
— Fetch 14 — 12
| ssa 6 - processed at once
— R Read 12 —
— — D1

Clock | e t——F p2_| [Order of operations

o LT - rte Load/Store . .

o e — 7 is determined
TTTPATTTT] 64 bits
cycle

//// —> [e—
Still sequential XxmmO

(single core) | | |

Pipelining: Multiple
instructions being
processed at once | | | | |

512 255 127 0

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : i et AT_ ‘ UNIVERSITY of
. . . : 3 for the LS. Papartmant of Energy WASHINGTON
University of Washington by Andrew Lumsdaine)

General Performance Principles

» Work harder Dennard scaling

— Faster core ~ | (ended 2005)
 Work smarter
— Branch predictions, etc What

— Better compilatior/ about this?

— Better algorithm
— Better implementation __ \We did this

* Get help
~J Parallel
Computing

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 ‘ roceem | universiTyo
University of Washington by Andrew Lumsdaine st e

Anyone in HPC must
know Flynn’s taxonomy

« Classiciassification of parallel architectures (Michael Flynn, 1966)

Flynn’s Taxonomy (Aside

Plain old

Single Instruction Multiple Instruction K K
Instruction . | Instruction
. T~ Storage - Unit
sequential | ¢
S SISD ¢
g Operand » Execution
Storage |e—] Unit
I
©
a Instruction Instruction Instruction Instruction
2 SIMD MIMD Storage Storage Storage Storage
v v v v
Instruction Instruction Instruction Instruction
Unit Unit Unit Unit
Based on multiplicity
\ 4 \ 4 \ 4 \ 4
1 1 Data .| Execution .| Execution .| Execution Execution
Of InStrUCtlon Storage Unit g Unit g Unit Unit
streams, data storage 5
-

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

SIMD and MIMD

« Two principal parallel computing paradigms (multiple ¢

i Shared Memory

8

But each have

for ADVANCED COMPUT

AMATH 483/583 High

Not Shared

Pacific Northwest
NATIONAL LABORATORY

University Cr=rrersrrrrerormy=rrrererr—crr

Proodly Operated by Baese
for the LS. Department of Enen

Single instruction g Oporn their own data
at a time \ l l l l
CEE - All execution
Multiple e T ! ! ! N units execute in
instruction \ (c)lock step
EUS run Instruction . | Instruction Instruction] Instruction Instruction] Instruction
Sterage ' Unit Storage Unit Storage Unit -
independently I I I —| Coming
(wown instrs) | | Tomd [1% | | Tome 1% | | Tome [%o | [_up next
v 4 v 4 v 4

W

UNIVERSITY of
WASHINGTON

A More Refined (Programmer-Oriented) Taxonomy

* Three major modes: SIMD, Shared Memory, Distributed Memory

 Different programming approaches are generally associated with
different modes of parallelism (threads for shared, MPI for distributed)

A modern supercomputer will have all three major modes present

PATTERNS Parallel Clomputers |
pa | | i
ROG /\M M l NG SIMD MIMD grg;jierrfhﬁground/Paral elH
bl | |

Shared Memory

Distributed Memory

T) . =~z .

llllllllllllllllllll -
Pacific Northwest
NATIONAL LABORATORY

IIIIIIIIIII

AMATH 483/583 High-Performance Scientific Computing Spring 2019 ‘,"1 P ——
University of Washington by Andrew Lumsdaine | S D —

SIMD in SSE/AVX

Instruction Operand
Storage Storage
EU EU EU EU
Instruction T T T T
Unit

vfadd231pd JymmO, %ymml, %ymm2

Flynn’s original
conceptual model

ymm are 256 bit
registers

1x double 64 bits\
— " e T)

One machine
instruction

¥ ¥ ¥

Adds all four doubles

simultaneously

"OMPUTING

ymmO

ymm-1

ymm2

W

H 483/583 High-Performance Scientific Computing Spring 2019 / ety Operatod by Bamese UNIVERSIT

Y o,

of
WASHINGTON

University of Washington by Andrew Lumsdaine

SIMD in SSE/AVX

Instruction Operand
Storage Storage
EU EU EU EU
Instruction T T T T
Unit

vfadd231ps %ymmO, %ymml, ’%ymm2

_— | conceptual model

Flynn’s original

ymm are 256 bit
registers

1x float 2 bits
e

One machine
instruction

Al A A A A A

Adds all eight floats
simultaneously

"OMPUTING

H 483/583 High-Performance
University of Washington by Andrew Lumsdaine

Scientific Computing Spring 2019

ymmO

ymm-1

ymm?2

Multicore Architecture

4th Generation Intel® Core™ Processor Die Map
22nm Haswell Tri-Gate 3-D Transistors

System
Agent,
Display |
, 3 =1 5% : : Engine & §
Procegsor e | | = : Memory !
Graphics | RS LR Controller B

including
Display, PCle

red L3 Cache** A -rdom 05

Quad core die shown above | Transistor count: 1.4Billion ’ Die size: 177mm?
** Cache is shared across all 4 cores and processor graphics

U — T S — T T T T e, I ————————i e O W YW . P TIRT TIE VTR T TR TN T TR T TV Y IV Y R

All products, dates, and figures spedified are UNDER EMBARGO UNTIL FURTHER NOTICE o’ t l
preliminary based on current expectations, and (
NOR TH WES T INS TI are subject to change without notice. INTEL CONFIDENTIAL In e

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

Multicore for HPC

 How do multicore chips operate (how does the hardware work)?
 How do they get high performance?

 How does the software exploit the hardware (how do we write our
software to exploit the hardware)?

 What are the abstractions that we need to use to reason about
multicore systems?

« What are the programming abstractions and mechanisms?
e Terminology: Program, process, thread
« More terminology: Parallel, concurrent, asynchronous

NORTHWEST INSTITUTE for ADVANCED COMPUTING ~ W/
Pacific Northwest -

AMATH 483/583 High-Performance Scientific Computing Spring 2019 & e i f UNIVERSITY o A
University of Washington by Andrew Lumsdaine v st e PVASEINGION

Multicore Architecture _
Any CPU in the

Coreisa g e last 4-5 years
N
FDREW +regs| |[¥ o7 Feen [pd
F r1 /< Instructions_ | ()
) | 1D
Each runsits —{{gr] L? L2
r3
own sequence |_| | [E| b | Feteh [
. . — W — 2
of instructions | | 57 [15 | Loadstore S E =
i jF 0 Fetch L1 E D1
Each can access | 4] [@ () m “‘m D2
. R Load/Store
its own data R Tz\ L2 ||
z i
- — 1 L D)
—»| |e I r5 Load/Store
| /
OR VSN Each has memory Bl might be shared !
14 AVATH hierarchy | j‘ Ui | WANERGIS

Parallelization Example

* You are the TA for CSE 142 and have to grade
22 exams

« The exam has 8 questions on it
|t takes 3 minutes to grade one question

 How long will it take you to grade all of the
exams?

NORTHWEST INSTITUTE for ADVANCED COMPUTING

Y NATIONAL L. ATORY / 2
AMATH 483/583 High-Performance Scientific Computing Spring 2019 / 0 Orenisisy buese’ | [SRS U N IVERSE e
University of Washington by Andrew Lumsdaine S D —

Parallelization Example

* You are the TA for CSE 142 and have to grade 22
exams

 The exam has 8 questions on it

« |t takes 3 minutes to grade one question
* You ask 21 friends who agree to help you

« How long will it take the 22 of you to grade all of the
exams?

« Describe your approach
 List your assumptions

Pacific Northwest / 5
J NATIONAL LABORATORY
AMATH 483/583 High-Performance Scientific Computing Spring 2019 Doy Openisi £ bucee R[S O [VERSE[e
University of Washington by Andrew Lumsdaine g -

Parallelization Example

* You are the TA for CSE 142 and have to grade 1012
exams (1012 = 46 * 22)

 The exam has 8 questions on it
« |t takes 3 minutes to grade one question
* You ask 21 friends who agree to help you

« How long will it take the 22 of you to grade all of the
exams?

« Describe your approach
* Describe another approach
 List your assumptions

Pacific Northwest / 5
J NATIONAL LABORATORY
AMATH 483/583 High-Performance Scientific Computing Spring 2019 Doy Openisi £ bucee R[S O [VERSE[e
University of Washington by Andrew Lumsdaine g -

Parallelization Example

NORTHWEST INSTITUTE for ADVANCED COMPUTING

You are the TA for CSE 142 and have to grade
8 exams

The exam has 22 questions on it
It takes 3 minutes to grade one question
You ask 21 friends who agree to help you

How long will it take the 22 of you to grade all
of the exams?

Describe your approach

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

IIIIIIIIIII

Parallelization Example

* You are the TA for CSE 142 and have to grade
368 exams (368 = 46 * 8)

« The exam has 22 questions on it
|t takes 3 minutes to grade one question
* You ask 21 friends who agree to help you

 How long will it take the 22 of you to grade all
of the exams?

 What if you had 368 friends? 368*227

NORTHWEST INSTITUTE for ADVANCED COMPUTING 7
Pacific Northwest

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : Doy Openisi £ bucee R[S O [VERSE[e
University of Washington by Andrew Lumsdaine g -

Compare And Contrast

« Time for everyone grades one exam
« Time for everyone grades one question

 How (why) did you use the approaches you did?

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : k ,:M,,,MR - | _UNIVERSITY,
University of Washington by Andrew Lumsdaine / el b

ow Do We Run Many Programs at the Same Time?

@ Grab File Edit Capture Window Help

10 loe O

2@OE O B2 WA) Wedl0:48PM L

Andrew Q

Insert Design Transitions Animatio 4
B o-J j

Insert Design Tra

X, cut

Go

i Copy *
¥ Default Section (11]

'
LAUEOvbe

Paste New
<% Format Slide

Q Searchoral

HNC A

| void tiledMultiply2x2(const Matrixk A, const Matrix&B, Matrix&C) {
for (int i = 0; i < A.numRowsQ); i += 2) {
i} for (int j = @; j < B.numColsQ; j += 2) §
for (int k = @; k < A.numCols(); ++k {
v/ Ci , j) +=AG , k) *Bk, j)5
CCi , j+1) += AGL , k) * B(k, 3+1);
C(i+l, j) += ACi+l, k) * BCk, §)5
= CCitl, 3+41) += A+, KD * Bk, 3+1D;
}

void tiledMultiply2xd(const Matrix& A, const Matrixg8, MatrixdC) {
for (int i = 0; i < A.numRowsQ); i += 2) {

- for (int j = 0; j < B.numCols(); j += 4 {
for (int k = 0; k < A.nunCols(); ++) {
10 € , 3) +=AG , k) *BCk, j)3
CCGi, 341D += AGL , KD * Bk, 3+1D;
CCGi, 342 += AGL , KD * Bk, 3+2);
= CCi, 343) += AGL , KD * B(k, 3+3);
CCisl, §) += AGi+1, k) * BCk, § O3
CCivl, 341D += AGi+1, KD * Bk, 3+1D;
CCivl, 342D += AGi+1, KD * Bk, 342D}
CCi+l, 343) += ACi+1, KD * Bk, 3+3);

void tiledMultiply4x2(const Matrix& A, const Matrix&B, Matrix&() {
for (int i = @; i < A.numRows(); i += 4)
for (int j = 0; j < B.numColsQ); j += 2) {
for Cint k = 0; k < A.numCols(); ++k) {
CGi , 3 d+=AG , k) *BCk, j);
i, 341 += AG , k) * BCk, j+1);

CCitl. i) 4= ACGi+1. k) * B(k. 5)
-:i--- Matrixcpp 7% (70,5) Git-master (C++/I WordWrap Abbrev) Wed Apr 19 10:48PM 1.93

21

<) douglas adams

gle douglas adams Q

Al Books News Images Videos More Seftings Tools

0O« W)

© Matrixs.opt05 | & cpuids | © cpuinfocpp | © Maixepp [© 17 | & Marrixs.05 | © ama) oo ossonEsiszies cd ..
2} 1ums658QWE31821=> cp L7/L7.pptx L8
3 1ums658QWE3182:
1ums658WE31B21=> my L7.pptx L8.pptx
* || void hoistedMultiply(const Matrix& A, const Matrixd8, MatrixRC) { 1uns658GWES1821=> open L8.pptx
for (int i = 0; i < A.numRows(); ++1) { 1ums658QWE3L821=> s
for (int j = @; § < B.numCols); ++) { LB:ppLx
Ut O el i 1ums658QWE31821=> git add L8.pptx
a1 double t = C(i,]); 1ums658QWE31821=> || L3
for (int k = 0; k < A.numCols(); ++k) {
t += ACLK) * BCk,3);
WL =t
S ¥

ANAT % 55005 Hign-rerormance SCIENTUTC LOMpuung dpring 2u 1y
University of Washington by Andrew Lumsdaine

¢

of

Fmore

14

\eople

ing
20ls.

F more

UNIVERSITY of
WASHINGTON

Running a Program

When a CPU is

one program

executing bytes from

Bytes from program
stored in memory

I | —+ B Fetch T{
It isn’t executing | oot F =
— R Read 12 L
bytes from another 1| e £]
e LML R Write [Load/Store
> e TTTTTTTT] /
cycle

(I.ncltudlnifrom the OS) How does another How did the
Just another program program run? bytes get here?

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

ow Do We Run Many Programs at the Same Time?

@ Grab File Edit Capture Window Help

10 loe O

2@OE O B2 WA) Wedl0:48PM L

Andrew Q

Insert Design Transitions Animatio 4
B o-J j

Insert Design Tra

X, cut

Go

i Copy *
¥ Default Section (11]

'
LAUEOvbe

Paste New
<% Format Slide

Q Searchoral

HNC A

| void tiledMultiply2x2(const Matrixk A, const Matrix&B, Matrix&C) {
for (int i = 0; i < A.numRowsQ); i += 2) {
i} for (int j = @; j < B.numColsQ; j += 2) §
for (int k = @; k < A.numCols(); ++k {
v/ Ci , j) +=AG , k) *Bk, j)5
CCi , j+1) += AGL , k) * B(k, 3+1);
C(i+l, j) += ACi+l, k) * BCk, §)5
= CCitl, 3+41) += A+, KD * Bk, 3+1D;
}

void tiledMultiply2xd(const Matrix& A, const Matrixg8, MatrixdC) {
for (int i = 0; i < A.numRowsQ); i += 2) {

- for (int j = 0; j < B.numCols(); j += 4 {
for (int k = 0; k < A.nunCols(); ++) {
10 € , 3) +=AG , k) *BCk, j)3
CCGi, 341D += AGL , KD * Bk, 3+1D;
CCGi, 342 += AGL , KD * Bk, 3+2);
= CCi, 343) += AGL , KD * B(k, 3+3);
CCisl, §) += AGi+1, k) * BCk, § O3
CCivl, 341D += AGi+1, KD * Bk, 3+1D;
CCivl, 342D += AGi+1, KD * Bk, 342D}
CCi+l, 343) += ACi+1, KD * Bk, 3+3);

void tiledMultiply4x2(const Matrix& A, const Matrix&B, Matrix&() {
for (int i = @; i < A.numRows(); i += 4)
for (int j = 0; j < B.numColsQ); j += 2) {
for Cint k = 0; k < A.numCols(); ++k) {
CGi , 3 d+=AG , k) *BCk, j);
i, 341 += AG , k) * BCk, j+1);

CCitl. i) 4= ACGi+1. k) * B(k. 5)
-:i--- Matrixcpp 7% (70,5) Git-master (C++/I WordWrap Abbrev) Wed Apr 19 10:48PM 1.93

23

<) douglas adams

gle douglas adams Q

Al Books News Images Videos More Seftings Tools

0O« W)

© Matrixs.opt05 | & cpuids | © cpuinfocpp | © Maixepp [© 17 | & Marrixs.05 | © ama) oo ossonEsiszies cd ..
2} 1ums658QWE31821=> cp L7/L7.pptx L8
3 1ums658QWE3182:
1ums658WE31B21=> my L7.pptx L8.pptx
* || void hoistedMultiply(const Matrix& A, const Matrixd8, MatrixRC) { 1uns658GWES1821=> open L8.pptx
for (int i = 0; i < A.numRows(); ++1) { 1ums658QWE3L821=> s
for (int j = @; § < B.numCols); ++) { LB:ppLx
Ut O el i 1ums658QWE31821=> git add L8.pptx
a1 double t = C(i,]); 1ums658QWE31821=> || L3
for (int k = 0; k < A.numCols(); ++k) {
t += ACLK) * BCk,3);
WL =t
S ¥

ANAT % 55005 Hign-rerormance SCIENTUTC LOMpuung dpring 2u 1y
University of Washington by Andrew Lumsdaine

¢

of

Fmore

14

\eople

ing
20ls.

F more

UNIVERSITY of
WASHINGTON

A Word About Operating Systems

* An operating system is a program that provides a standard interface
between the resources of a computer and the users of the computer

Two of the most
important: CPU
and memory

Clock

—»| |e
cycle

NN EEEE

NN

Fetch 14 L

Decode 13 L

R Read 12 L

Execute 11 —

R Write —
L 1

FTTTTTTTT

Fetch

Load/Store

/

Two of the most
important: CPU
and memory

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performan

ce Scientific Computing Spring 2019

University of Washington by Andrew Lumsdaine

I /

2

3 Also, file system,

= 1/0, network, etc
For HPC, these are

P

the most imporant

Pacific Northwest
NATIONAL LABORATORY

UNIVERSITY o
Proxly Operated by Bavese
for the LS. Department of Enen

Processes and Threads

« A process is an abstraction for a collection of
resources to represent a (running) program

— CPU
— Memory
— Address space

« Athread is an abstraction of execution (using the
resources within a process)

— Can share an address space

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 / orrnem | UNIVERSITYo
University of Washington by Andrew Lumsdaine / st e

ow Do We Run Many Programs GiheuBcantyi?me?

v

& Grab File

Edit Capture Window Help

1O 0lEe®XAOMR O AT W

(%) Wed10:48 PM L Andrew Q

= R . douglas adams

Insert Design

Transitions Animatiol
MaE v J J

Insert Design

X cut

Copy ~

GO gle douglas adams

homewor

Default Section (1]

paste
&7 Format
Al Books

o«

€ Matrixs.05 | © amd 1 ypsessonesiazi=s oo ..
1ums6580WE31821=> cp L7/L7.pptx L8
1ums658QWE31821=> cd L8
Lums658GWE3L821=> mv L7.pptx L8.pptx
1ums6580WE31821=> open L8.pptx
1uns6580WE31821=> 1s
L8.pptx
1ums658GWE3L821=> git add L8.pptx

News Videos

P

Images More

D @ <

© Matrixs.opt05 | @ cpuids | @ cpuinfocpp | @ Matrixcpp [© 17
¥

| void hoistedMultiply(const Matrix& A, const Matrixd8, Matrix®C) {
for (int i = 0; i < A.numRows(); ++1) {
for (int j = 0; j < B.numColsQ); ++3) {
| double t = C(i,3);
for (int k = 0; k < A.numCols(); ++k) {
t 4= ACLLKD * BCK,5);

WL =t
¥

¥

| void tiledMultiply2x2(const Matrixk A, const Matrixg8, Matrix&C) {
[for Cint i=0; i <A.numRowsO); i += 2 {
i} for (int j = @; j < B.numColsQ; j += 2) §
for (int k = @; k < A.numCols(); ++k {
Ci , j) +=AG , k) *Bk, j)5
CCi , j+1) += AGL , k) * B(k, 3+1);
C(i+l, j) += ACi+l, k) * BCk, §)5
= CCitl, 3+41) += A+, KD * Bk, 3+1D;
}

void tiledMultiply2xd(const Matrix& A, const Matrixg8, MatrixdC) {
for (int i = 0; i < A.numRows(); i +=
- for (int j = 0; j < B.numCols(); j += 4 {
for (int k = 0; k < A.nunCols(); ++) {

€ , 3) +=AG , k) *BCk, j)3

G, 341D += AG , KD * B(k,

G, 342 += AG , KD * B(k,
= G, 343) += AG , k) * B(k,
CCivl, J) += AGi+1, k) * B(k,
CCivl, 341D += ACi+1, KD * B(k,
CCi+l, 342) += ACi+1, KD * B(k,
CCi+l, 343) += ACi+1, KD * B(k,

3+1);
3+2);
3+3);
i
35
3+2)5
343);

void tiledMultiply4x2(const Matrix& A, const Matrix&B, Matrix&() {
for (int i = @; i < A.numRows(); i += 4)
for (int j = 0; j < B.numColsQ); j += 2) {
for Cint k = 0; k < A.numCols(); ++k) {
CGi , 3 d+=AG , k) *BCk, j);
i, 341 += AG , k) * BCk, j+1);

CCitl. i) 4= ACGi+1. k) * B(k. 5)
-:i--- Matrixcpp 7% (70,5) Git-master (C++/I WordWrap Abbrev) Wed Apr 19 10:48PM 1.93

26

University of Washington by Andrew Lumsdaine

Settings

1ums6580WE3L821=> || L3

ANVATH AOJ/DGJ Hign-reriormance Scienunc Lompuung Spring vy

¢

Q

Tools

1

” Do not ever say: “the)

operating system stops

the first process and
starts the next

more:

_ v,

G

ng.
hanks

W

UNIVERSITY of
WASHINGTON

Preudty

The Operating System Can Run When...

NORTHWEST INSTITUTE for ADVANCED COMPUTING

The process whose instructions are being executed by the CPU (the
running process) requests a service from the OS (makes a system call)

In response to a hardware interrupt
It does not spontaneously run
It is not somehow running in the background

Again, when the CPU is executing instructions for one program, it is not
executing instructions for another program

The only way anything happens on the computer is if the CPU executes
instructions that make it happen

AMATH 483/583 High-Performance Scientific Computing Spring 2019 € e / UNIYERSEN
University of Washington by Andrew Lumsdaine 1 S D —

Process Abstraction Stored in Process

/ Control Block (PCB

Set of information Process management Memory management File management
! Registers Pointer to text segment Root directory
about process Program counter Pointer to data segment Working directory
Program status wo Pointer to stack segment | File descriptors
resources Stack pointer User ID
Process state Group ID
Sufficient to be able | | oo
~] Scheduling parameters What does program
to start a process E;ﬁgifspr'g’cess counter represent?
after stopped Process group
Signals
. Time when process started
Also for accounting / CPU time used
2dministrative "t Children’s CPU time
Time of next alarm
purposes

NORTHWEST INSTITUTE for ADVANCED COMPUTING

a AT | o7
igh- ientifi i i ERSITY o
AMATH 483/5.83 ngh Performance Scientific Computmg Spring 2019 : Pty Ot e U:é\ll-lFlRNg’lYO{\l
University of Washington by Andrew Lumsdaine)

The PrOceSS CO) ® lums658@WE31821 - /Users/lums65:

Processes: 419 total, 2 running, 417 sleeping, 1988 threads
Process ID Load Avg: 1.93, 1.88, 1.87 CPU usage: 3.45% user, 3.69% sys,
S top -U \ MemRegions: 156549 total, 7076M resident, 141M private, 3629M

VM: 4328G vsize, 627M framework vsize, 71344832(64) swapins, .

® 58 8— 31821 — top — 148x64

Pr cad 06:16:00 .

Load Avg: 1.93, 1.88, 1.87 Wsage: 3.45% user, 3.69% sys, 92.84% idle SharedLibs: 252M resident, 48M data, 60M linkedit. Dls ks . 57076556/15246 read 1 36925949/7926 wrltten .

MemRegions: 156549 total, 7876M\gesident, 141M private, 3629M shared. PhysMem: 16G used (2616M wired), 236M unused.

VM: 43286 vsize, 627M framework vsize, 71344832(64) swapins, 74404796(0) swapouts. Networks: packets: 41299644/296 in, 41644343/26G out.

Disks: 57070556/1524G read, 36025949/792G written.

PID COMMAND %CPU TIME #TH #WQ #PORT MEM PURG _ CMPRS PGRP _PPID ST, oD e amnn i’ Co 0, C U Q o U
i PID MMAND %CPU TIME #TH #WQ #PORT MEM PUR(
] kernel task 12.6 29:59:12 177/9 0 2 18094+ 68 8)] running ele] ©.00000 0.00000 0 .

114 hidd 4.4 01:46:55 6 3 381+ 3024K+ 0B 1368K 114 1 sleeping *@[1] ©.00000 0.00000 261 162 Wlndowser 07 : 48 : 6 2 702+ 537M+ 93M
8333 top 4.0 00:00.72 1/1 @ 21 5016K ©B B 8333 67567 running *0[1] ©.00000 0.00000 0

8334 screencaptur 3.9 00:00.06 4 3 57 2500K+ 20K 0B 853 853 sleeping *0[1] ©.00000 3.68962 670519321

91791 LaTeXiT 2.3 09:45.97 6 2 255 42M @B 3oM 91791 1 sleeping *@[113] ©.00000 0.00000 670519321 0 177/9 0 2 1809M+ OB
67565 Terminal 2.0 01:50.53 13 8 346+ 72M @B 19M 67565 1 sleeping *[1555] ©.00000 o, 1

3288 Calendar 1.6 ©9:54.07 3 1 292 95M 1856K 39M 3288 1 sleeping ¥0[3352] 0.00000

1234 com.docker.h 1.1 02:02:24 18 1 38 763 @B 487M 1228 1228 sleeping x6[1] 0.00000 6 3 381+ 3924K+ eB
846 usernoted 1.1 03:13.97 5 4 139+ 11N+ 896K B6O4K 846 1 sleeping x0[1] 0.00000

83898 Slack Helper 1.0 01:40.81 19 2 149 189M+ ©B 49M 63333 63333 sleeping *6[4] 0.00000 OW .

91742 splunkd 0.8 40:02.2535 @ 48 85M B 47M 91741 1 sleeping *0[1] 0.00000 00 . ee . 72 1/ 1 0 2 1 5616 K e B
63334 Slack Helper 0.6 01:19.70 5 2 124 7780K @B 26M 63333 63333 sleeping *0[1] 0.00000

184 mDNSResponde 0.5 22:51.68 5 1 103 5628K @B 30e8K 184 1 sleeping *@[1] 0.00000 .

111~ NetworkMonit @.4 12:37.75 28 27 49+ 22M+ 0B 185M 111 1 sleeping *0[1] 0.00000 . 9 00 . ee . 96 4 3 57 2500K+ ZeK
883 CalNCService 0.3 19:18.74 5 3 182+ 39M+ @B 5104K 883 1 sleeping %2680(2102] 1.12984 I ,

853 SystemUIServ 0.2 02:45.35 5 3 371 33+ 28K- 26M 853 1 sleeping *0[29393] ©.00000 l I l

63333 Slack 0.2 04:36.66 33 1 398 73M B 26M 63333 1 sleeping *0[803] ©0.00000 u C h C U 2 . 3 69 H 45 . 97 6 2 255 42M eB
214 com.apple.if 0.1 16:08.11 5 3 381 1760K @B 1256K 214 1 sleeping @[10988] ©.00000

42449 Notification 0.1 01:22.32 5 2 295+ 3GM+ 756K 32M 42449 1 sleeping *0[13680+] ©.00000 0.11982 670519321

1163- netsession.m 0.1 16:44.56 9 143 2924k @B 6796K 1163 1 sleeping *0[1] ©.00000 0.00000 670519321 67565 2 . 0 01 H 5@ . 53 13 8 346+ 72M OB
1173 java 0.0 13:22.66 27 1 218 26M B 116M 1173 1 sleeping *6[1] ©.00000 0.00000 670519321

93 SymDaemon 0.0 63:53.97 20 4 154 316M @B 6M 93 1 sleeping x0[1] ©.00000 ©.000! 2 2000 .

89822 Microsoft Po 0.0 12:19.35 22 5 489 1172M 117M 1834 89822 1 sleeping *0[1162] ©.00000 0.000! 1 . 6 09 . 54 . 07 3 1 292 95M 185(
53- dsAccessServ 0.0 07:36.73 14 5 115 2376K 0B 2912k 53 1 sleeping x0[1] ©.00000 ©.000!

818 CommCenter 0.0 01:14.31 8 3 264 3968K OB 4860K 818 1 sleeping *0[1] ©.00000 8.000 d k h 1 1 02 . 02 . 24 18 1 38 763M eB
1225 com.docker.o 0.0 02:05.83 11 1 49 196K B 16M 1225 1221 sleeping xe[1] ©.00000 0.000! I I OW I I l a n Oom.dockKer. . . .

1157 CrashPlanWeb 0.0 78:13.14 27 2 336 47M 12K 36M 1157 1 sleeping *6[1] ©.00000 ©.000!

8331 SCHelper 8.0 00:00.01 3 2 28+ 644K+ @B o8 8331 1 sleeping @[13] ©.00000 0.000 d 1 1 03 . 13 97 5 4 139 11M 896'
1147 AOUMonitor 0.0 04:32.71 8 2 175 15M @B 1M 1147 1 sleeping *0[1] ©.00000 ©.000! userno t e . . . + +

60 logd 0.0 13:28.40 4 4 823 36M @B 1M e 1 sleeping *6[1] ©.00000 0.000!

42 CrashPlanSer 0.6 42:24:56 89 1 236 223M @8 sseM 42 1 sleeping 0[0] ©.00000 ©.000! t h Sla c k Helper 1 0 01 . 40 81 19 2 149 189M+ eB
1224 com.docker.d 0.0 04:26.05 8 e 17 21M @B 12M 1224 1221 sleeping x6[1] ©.00000 0.000! re a S . . .

814 UserEventAge 0.0 01:50.69 3 1 632 4512 @B 2112K 814 1 sleeping *0[1] ©.00000 ©.000!

42572 Jabra Skype .8 03:04.56 4 2 154 3036k @B 3aM 42572 1 sleeping *0[1375] ©.00000 0. 000 Clemmmm— 2 S pl un kd e 8 40 . 92 25 35 e 48 85M e B
84167 Slack Helper 0.0 00:31.70 26 2 150 148M OB 82M 63333 63333 sleeping *0[4] ©.00000 8.0000 678519321 s . . .

66996 com.apple.We 0.0 02:52.26 5 1 144 3M @B 1328K 66996 1 sleeping *2(1] ©.00000 0.00283 670519321

64 airportd 0.0 10:06.49 3 1 383 24M 0B 1M 6 1 sleeping *322[711] ©.00000 0.00000] 63334 Slack Helper 6 . 6 01 : 19 . 70 5 2 124 7789K eB
69950 Mail 0.0 17:22.00 16 3 549 242M 29M M 69950 1 sleeping *0[3148] 0.60000 0.00600 670519321

1024 sharingd 0.0 03:40.28 4 1 235 23M 1920K 7900K 1024 1 sleeping *46[588] ©.00000 0.00000 670519321

1121 SafariCloudH 0.6 03:28.67 & 3 48 1508K @B 40K 1121 1 sleeping *0[1] ©0.00000 0.00000 670519321 184 mDNSResponde a . 5 22 . 51 . 68 5 1 193 5628K eB
860 cloudphotosd 0.0 01:10.67 6 1 273 5320k @B 20M 860 1 sleeping 0[8239] ©.00000 0.00000 670519321

102 blued 0.0 04:01.89 3 1 167 7608K @B 1608K 102 1 sleeping *0[1] ©.00000 0.00000 0 .

1155 SynUIAgent 0.0 01:09.37 5 1 195 6500K @B 1M 1155 1 sleeping *6[1] ©.00000 0.00000 670519321 —_— k 0 2 M 3 5 28 2 9 22 e
186 mDNSResponde 0.0 ©00:33.85 3 2 60 1688K OB 932K 186 1 sleeping ¥0[1] ©.00000 0.00000 O 111 NetworkMonit 4 12:37.7 7 49+ M+ B
116 AirPlayXPCHe 0.0 00:15.07 2 2 131 2024K @B 2676K 116 1 sleeping *6[1] ©0.00000 0.00000 0 .

218 symptomsd ©.6 02:36.93 3 2 165 5184K @B 488K 218 1 sleeping @[47812] ©.60000 0.00000 24 883 Ca lNCse rvice 0 . 3 19 . 18 . 74 5 3 182+ 39M+ 0 B
89454 ntpd 0.0 00:01.40 3 3 28 776K @B 1528K 89454 1 sleeping *8[1] ©0.00000 0.00000 0

97 locationd 0.0 02:25.93 6 1 125 B276K 256K 4644K 97 1 sleeping 0[81714] ©.00000 0.00000 205

52 configd 0.0 08:51.25 11 4 635 6020K+ 0B 6320k 52 1 sleeping *8[1] 0.00000 0.00000 0 853 SystemUIserV e . 2 02 H 45 . 35 5 3 371 33M+ 28K'
6167 mdworker 0.0 00:00.77 4 1 54 2944K @B 2M 6167 1 sleeping x0[1] ©.00000 0.00000 670519321

47- vpnagentd 0.0 86:20.57 6 1 64 6488K 6B oM 4 1 sleeping *0[1] ©.00000 0.00000 0 .

195 mds_stores 0.0 03:00:12 6 4 117 183M 2188K 46M 195 1 sleeping x@[1] ©.00000 0.00000 0 63333 Slac k 0 . 2 04 . 36 . 66 33 1 390 73M eB
861 CalendarAgen 0.0 02:43:54 3 1 33 8eM 28M 48M 861 1 sleeping @[614163] ©.00000 0.00000 670519321

205 coreaudiod 0.0 01:52:15 3 1 347 3112 @B 2268K 205 1 sleeping *6[1] ©.00000 0.00000 02 - o

1382 Electron Hel 0.0 91:49.3519 2 113 68M 0B 28M 1157 1157 sleeping x@[1] ©.00000 0.00000 670519321

67 mds 0.0 80:27.80 9 4 920 6IM @B sM 67 1 sleeping *6[1] ©0.00000 0.00000 o]

NORTHWEST INSTITUTE for ADVANCED COMPUTING , \7’/ w
Pacific Northwest / /5

NATIONAL LABORATORY

igh-| ientifi i i i UNIVERSITY of
AMATH 483/583 ngh Performance Scientific Computmg Spring 2019 / iy e SR
University of Washington by Andrew Lumsdaine

29

Process address space

P Created and
Memory resources SIEE managed at run time
for each process
AN
Created and
Address manaree?zl zt raunn time
All 32/48/64 bits -~ Space / 5
/ Heap Compiled /
How can each Linked
Data
process use all the Stored
address space? Text Program

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : k ,M,,,MR - | _UNIVERSITY,
University of Washington by Andrew Lumsdaine / el b

Process Lifetime Interrupt or Scheduler
Can have many system call dispatch

many processes
running “at the
same time (

exit

Admitted

Terminated

/O or event |/O or wait
completion event

NORTHWEST INSTITUTE for ADVANCED COMPUTING

) NATY ATORY / 2
AMATH 483/583 High-Performance Scientific Computing Spring 2019 / L5 . UNIVERSITY of
University of Washington by Andrew Lumsdaine / preet s ASEINCION

Context Switch

PO and P1
are running
processes

1

What does
this mean?

And this?

PCB = Process
Control Block

L
| wormiwes i S

/

\

v

lexecuting l

L—" process P, operating system process P,

interrupt or system call

External
to OS

OS does
not do this

0 save state into PCB, \\
>idle
reload state from PCB, 1
. |
[ridle interrupt or systemcall — || executing
| \ i -
save state into PCB;
. > id
\\ ° ///IE’
J reload state from PCB,, o
\ Silberschatz, Galvin, Gagne

External
to OS

__ Expensive!

W

UNIVERSITY o) of
WASHINGTON

Process Queue

A process control block (PCB)
has all information necessary | tape
to manage a process

process P, operating system

interrupt or system call
[executing Jl

3 | save state into PCB, |

|reload state from PCB; |

ridle interrupt or system call

| save state into PCB; |

|re|oad state from PCBO|

¥

s queue header PCB;, PCB,
ready | head - > =
queue tail registers registers
Ki /
unito |1l = Program runs from
start to finish
s e 74‘ PCB PCB PCB
tail +—= 3 14 6
ae|__head / I —1 Context switches
% tall b
_ ——— | are not observable
o PCB,
executing head '/ 7 ——
| tail - | Restart exactly
) » where we left off

Fersity of Washington by Andrew

b High-Performance Scientific Computing Spring 2019

Lumsdaine

IIIIIIIIIII
WASHINGTON

Process
invokes fork()

The other process (the
“parent) keeps executing

Can wait for other
process to complete

/

4

parent

L

resumes

[
' o

The OS makes a copy
of the original process
and makes it runnable

NORTHWEST INSTITUTE for ADVANC

34

One of the processes
(the “child”) runs exec()

Which pulls in new
program bits to run

You see this fork/exec/wait almost all the time

with one particular program you run (which?) M

Example: process creation in UNIX [, orocess “thinks”

One process #include <unistd.h> It CalIEd fork() and
returned
calls fork() \\lint main () {
fork(); /
Two processes ; Two processes
return O;
return from fork() } return from fork()
y4 /
#include <unistd.h> /include <unistd.h>
int main () { / int maip”() {
fork() ; . fork() make an
exact co
return O; l return O; py
} }

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 | S g UNIVERSITY of
. . . N for thee 1L ¥ Enecgy WASHINGTON
University of Washington by Andrew Lumsdaine |

Example fork() returns a

PID identifier

1

int main() {

{

Loop 20 times

int pids[2

/ C;\II fork() 20

times

for (int/i = 0; i < %Si,iiilzif’
pids[i] = fork(Q);

return O;

}
\ How many processes

get created?

}

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

Example B | How many
. o | T Don’t do processes?

for (int i = 0; i < 20; ++i) {
pids[i] = fork();

How deep is } this (ever)!

return O;

}

the tree? : J—
— —

int main() { int main() {
{ {
int pids[20]; int pids[20];

for (int i = 0; i < 20; ++i) {
pids[i] = fork();

1 == 1 for (int i = 0; i < 20; ++i) {
pids[i] = fork();

return 0; return 0;
} }
int main() { int main() { int main() { int main() {
N { { { {
int pids[20]; int pids[20]; int pids[20]; int pids[20];
for (int i = 0; i < 20; ++i) { for (int i = 0; i < 20; ++i) { for (int i = 0; i < 20; ++i) { for (int i = 0; i < 20; ++i) {
pids[i] = fork(Q); pids[i] = fork(Q); pids[i] = fork(); pids[i] = fork();
} ¥ } }
'|_| return 0O; return 0; return 0; return 0O;
} ¥ } }

NORTHWEST INSTITUTE for ADVANCED COMPUTING \7’/ 'w
PacifjgNorthwest / Js

IONAL LABORATORY
UNIVERSITY of

37 AMATH 483/583 High-Performance Scientific Computing Spring 2019 - SR
University of Washington by Andrew Lumsdaine - ‘ =2

@® IL 31821 - [Users/IL it/ th-583/lectures/L8 — 31821 — less « man fork — 135x52

®
ma n fo rk() FORK(2) BSD System Calls Manual FORK(2)

NAME

#include <unistd.h> svNoPs1s

pid_t fork();

fork —— create a new process

#include <unistd.h>

pid_t
fork(void);

DESCRIPTION

has a unique 1id

The child process|

Upon successful

returns a value of 0.
to the child process
and the returns the
process ID of the
child process to the

fork() causes creation of a new process. The new process (child process) is an exact copy of the calling process (parent
process) except for the following:

o The child process has a unique process ID.

o The child process has a different parent process ID (i.e., the process ID of the parent process).

o The child process has its own copy of the parent's descriptors. These descriptors reference the same underlying
objects, so that, for instance, file pointers in file objects are shared between the child and the parent, so that an

lseek(2) on a descriptor in the child process can affect a subsequent read or write by the parent. This descriptor
copying is also used by the shell to establish standard input and output for newly created processes as well as to set

up pipes.

o The child processes resource utilizations are set to 0; see setrlimit(2).

completion, fork() pwe

Upon successful, completion, fork() returns a value of @ to the child process and returns the process ID of the child process to
the rocess. Otherwise, a value of -1 is returned to the parent process, no child process is created, and the global
Tiable errno is set to indicate the error.

fork() will fail and no child process will be created if:

[EAGAIN] The system-imposed limit on the total number of processes under execution would be exceeded. This limit is
configuration-dependent.

[EAGAIN] The system-imposed 1limit MAXUPRC (<sys/param.h>) on the total number of processes under execution by a single
user would be exceeded.

[ENOMEM] There is insufficient swap space for the new process.
CY SYNOPSIS

#include <sys/types.h>
#include <unistd.h>

parent process

NORTHWEST INSTITUTE for ADVAKS

The include file <sys/types.h> is necessary.

ALSO

- -
UNIVERSITY of

AMATH 483/583 High-Performance Scientific Computing Spring 2019 / T) ARt
University of Washington by Andrew Lumsdaine - ==

Example Revisited

Get return
int main() { value of fork() How many
{ processes
pid_t pids[20]; / now?
for (int i = i< 20;;;;){/hc h
pids[i] = fork(); Zer(_)’ e_
if (pids[i] == 0) _—— | processis a child
break; I
. \ If no, the process
is the parent,
return O; keep going
+

NORTHWEST INSTITUTE for ADVANCED COMPUTING

Y NAT ATORY / 2
AMATH 483/583 High-Performance Scientific Computing Spring 2019 / e . UNIVERSITY of
University of Washington by Andrew Lumsdaine / e s ASEINCION

Process creation in UNIX (fork / exec pattern)

while (true) {
cout << H$ H;
cin >> command;

- pid_t child = fork();
) it (0 == child) {

execv(command, NULL);
} else {
wait(child);

+

while (true) {
cout << "$ H;
cin >> command;

pid_t child = fork();

if (0 == child) {
execv(command, NULL);
} else {
wait(child);

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 o eor | _universiTY,
University of Washington by Andrew Lumsdaine [e

ow Do We Run Mul

* W

Grab File Edit Capture Window Help

10 loe O

2@OE O B2 WA) Wedl0:48PM L

tiple Programs Concurrently?

Andrew Q

Insert Design Transitions Animatio 4

B o-J j
Insert Design Tra
X, cut

plazza G fo)
Copy * (B tectures_week1 homewor

Default Section (1] pagie

m Q Searchara
U#EOvee @S

© Matrixs.opt05 | @ cpuids | @ cpuinfocpp | @ Matrixcpp [© 17
¥

New
<% Format Slide

| void hoistedMultiply(const Matrix& A, const Matrixd8, Matrix®C) {
for (int i = 0; i < A.numRows(); ++1) {
for (int j = 0; j < B.numColsQ); ++3) {
| double t = C(i,3);
for (int k = 0; k < A.numCols(); ++k) {
t 4= ACLLKD * BCK,5);

WL =t
¥

| void tiledMultiply2x2(const Matrixk A, const Matrix&B, Matrix&C) {
for (int i = 0; i < A.numRowsQ); i += 2) {
i} for (int j = @; j < B.numColsQ; j += 2) §
for (int k = @; k < A.numCols(); ++k {
Ci , j) +=AG , k) *Bk, j)5
CCi , j+1) += AGL , k) * B(k, 3+1);
C(i+l, j) += ACi+l, k) * BCk, §)5
= CCitl, 3+41) += A+, KD * Bk, 3+1D;
}

void tiledMultiply2xd(const Matrix& A, const Matrixg8, MatrixdC) {
for (int i = 0; i < A.numRowsQ); i += 2) {

- for (int j = 0; j < B.numCols(); j += 4 {
for (int k = 0; k < A.nunCols(); ++) {
€ , 3) +=AG , k) *BCk, j)3
CCGi, 341D += AGL , KD * Bk, 3+1D;
CCGi, 342 += AGL , KD * Bk, 3+2);
= CCi, 343) += AGL , KD * B(k, 3+3);
CCisl, §) += AGi+1, k) * BCk, § O3
CCivl, 341D += AGi+1, KD * Bk, 3+1D;
CCivl, 342D += AGi+1, KD * Bk, 342D}
CCi+l, 343) += ACi+1, KD * Bk, 3+3);

void tiledMultiply4x2(const Matrix& A, const Matrix&B, Matrix&() {
for (int i = @; i < A.numRows(); i += 4)
for (int j = 0; j < B.numColsQ); j += 2) {
for Cint k = 0; k < A.numCols(); ++k) {
CGi , 3 d+=AG , k) *BCk, j);
i, 341 += AG , k) * BCk, j+1);

CCitl. i) 4= ACGi+1. k) * B(k. 5)
-:i--- Matrixcpp 7% (70,5) Git-master (C++/I WordWrap Abbrev) Wed Apr 19 10:48PM 1.93

41

| Matrbxs.05 | € ama) negsoneatsn

<) douglas adams

gle douglas adams Q

Al Books News Images Videos More Seftings Tools

0O« W)

cd ..
1ums6580WE31821=> cp L7/L7.pptx L8
1ums658QWE3182:
1ums6580WE31821=> mv L7.pptx LB.pptx
1ums658QWE31821=> open L8.pptx
1ums658QWE3L821=> 15
L8.pptx
1ums658@WE31821=:

git add L8.pptx
1ums658@WE31821=> [| L3

ANAT % 55005 Hign-rerormance SCIENTUTC LOMpuung dpring 2u 1y
University of Washington by Andrew Lumsdaine

¢

of

Fmore

14

\eople

ing
20ls.

F more

UNIVERSITY of
WASHINGTON

Multitasking
Tasks (processes or
threads) can be
scheduled sequentially

Time

Run to B’ T ——Feicn 1
completion | [Feen [4 |f 2
. Decode I3 — 13
] 2 Read :? — 51
Clock —_ Rx\t;/c?e — “‘m@ D2
- rite —
e LML - Load/Store
> e TTTTTTTT]
cycle

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 2 i UNIVERSITY of
. . . : iy WASHINGTON
University of Washington by Andrew Lumsdaine

Multitasking

Tasks can be
scheduled round

robin (time slicedy”

Run to context
switch (system
call or interrupt)

Clock

Fetch 14

Decode 13

R Read 12

Execute 11

R Write
|

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

/ \ S0

etch

Load/Store

Concurrency!

/ Time

>

IIIIIIIIIIIII

Multitasking on Multicore
Concurrency!

Time sliced A single threaded /

and mapped to| | task can only use
LTt

separate cores one core at a time K3 _ reon [
/ % r1 | <Instructions m
? r2 L2
HEEREEEN \ "B ; B [
_] __IV! 5 Load/Store ©)) L :2
] 3| =
4 ¥ o Feton || — D1
7 % P Lo [Load/Store
1 Clock L 3
Tlme o LTI - E rd L1
> > |e W 5 Load/Store D)
L T
cycle

NORTHWEST INSTITUTE for ADVANCED COMPUTING

f A ATORY 2
R ! UNIVERSITY of
AMATH 483/583 ngh Pen‘ormance Scientific Computmg Spring 2019 s Sl el /
University of Washington by Andrew Lumsdaine |

Multitasking on Multicore |, i What about L1, L2?
: : : / Shorter And L3 cache
Time sliced A multithreaded task un timel
. un time!
and mapped to can use multiple T Threads can
separate cores cores at a time ;/ro e [ralmm share memory
/ \ // % 11 | <instructions () \
=1 L2 L2
B E - L1 B Fetch K]
E __|V! rg Load/Store () g E :2
E 1 . Fetch E
S =]|]| |E <<
. L1 [r2 Lo Load/Store
Time Clock % :i L1 /
W Load/Store D) !
> Yoo T |TT| = Access same
variables

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 — o[universiTY, /
University of Washington by Andrew Lumsdaine / e |

Cache Coherence Hardware Same variable can be

managed in two different caches
\ N
A multithreaded task | | Cache coherence / What if one \
can use multiple memory consistency | | gets modified? hreads can
cores at a time RN ENNENTENTE.
__i\w\ o shaxe memory
= L . L1
F r1 tructions N \\
? r2 L -
DS = <= RN S
_ __IV! 15 | Load/Store ©® :z\\
= W E
1w e [- o
] oo E z Lo Load/Store
Time Gk b 7
- r oad/Store ‘
BT [N Access same

variables

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 — o[universiTY, /
University of Washington by Andrew Lumsdaine / e

Multitasking on Multicore Time

Run one task In half the LLLLLL L]

tlme (?) i 0 Fetch L1
/ i r1 <lnstructions (|)
D
R -2 L2
E | :i L1 Fetch 1
2wl (D) L 12
- =1 Loadsstore -
= _—Vl‘:— 0 Feeh 14 - D1
= F r1 < Instructions N — D2
> = 2 Lo Load/Store
. Clock = 3
Time Hpliginll ot [(",31)
> |e 5 Load/Store
cycle

NORTHWEST INSTITUTE for ADVANCED COMPUTING \z?/ / w
Pacific Northwest

TTTTT

AMATH 483/583 High-Performance Scientific Computing Spring 2019 UNIVERSITY of
WASHINGTON

7 University of Washington by Andrew Lumsdaine

Multitasking on Multicore Time

>
EEEEEEEEEENEEE .

Run one task

jF_ 0 Fetch L1
1| r < Instructions N
D
1 — | r2
In % the o B = s> [0]]
. ? —] E r4 “ L1 — FetCh I1
time (?) | M 5] wassee |© - 12
» _—Vl‘:— 0 Feeh 14 - D1
| F r1 <Instructions N - D2
= r2 Lo Load/Store
— [r3
E “‘iﬁ» L1
" w| 2 (D)
__IV! 5 Load/Store

NORTHWEST INSTITUTE for ADVANCED COMPUTING &7/ [W

Pacific North
NATIONAL LA

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of

48 WASHINGTON

Multitasking on Multicore

In 1/8 the
time (?)

Need enough
cores (8)

Nonetheless, this is the
essence of parallel computing

Parallel computation isn’t
done until all cores are done

r0

Fetch

r1

r2

r3

Work needs to
be balanced

r4

r5

00pSs

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019

r0

Instructions

i

Load/Store

Fetch

r1

r2

r3

r4

LN Ly
U= H=rEE

r5

Instructions

i

Load/Store

L1
(1)

L1
(D)

L2

L1
(D)

L2

L3

University of Washington by Andrew Lumsdaine

»»»»»»

Not the same as

concurrent
Fetch R
rsirugions] | |2
=
Load/Store

IIIIIIIIIII

Multitasking on Multicore

- This is the essence of
- parallel computing
How do we -
i LLLL Il
do this? B
r L1
% r1 <Instructions (|)
— r2 L2
R
- E _—IV! 5 Load/Store (©) 5 E :2
E 1 0 Fetch E D1
_ i r1 <Instructions I(_|‘; — D2
- N %) Lo [Load/Store
Clock —{ | r3
E ‘E» L1
- e || ? ©
—-»>| |e e 5 oad/Store
cycle TTTTTTTT]
—

NORTHWEST INSTITUTE for ADVANCED COMPUTING

i - i ifi i i "‘ UNIVF,RSIT.YO
AMATH 483/583 ngh Performance Scientific Computmg Spring 2019 » - WASHINGTO{\I
University of Washington by Andrew Lumsdaine |

Parallelization Strategy

A
vy

PATTERNS
FOR PARALLEL
PROGRAMMING

Timothy Mattson, Beverly Sanders, and Berna Massingill.
2004. Patterns for Parallel Programming(First ed.). Addison-
Wesley Professional.

NORTHWEST INSTITUTE for ADVANCED COMPUTING

Finding
Concurrency

I

Algorithm
Structure

i

Supporting
Structures

I

Implementation
Mechanisms

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

IIIIIIIIIII

Finding Concurrency

Decompose problem into pieces
that can execute concurrently

Into tasks that can / Finding Concurrency

Decomposition

execute concurrently [- | Dependency Analysis

Group Tasks

sk Decomposition

{

Qata Decomposition

Order Tasks

{

Data Sharing

// """"""""""""""""""" |

Units that can be operated
on (relatively) independently

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific C
University of Washington by Andrew

52

Algorithm
Structure

!

Supporting
Structures

Implementation

Mechanisms

Pacific Northwest W
NATIONAL LABORATORY J

g f
e TS gt of Evargy WASHINGTON

UNIVERSITY o

Ways to group tasks to simplify

Flndlng Concurrency management of dependencies

Finding Concurrency /
S | ——
Decomposition ’ !
— L Group Tasks e
Task Decomposition Ly { <—> Design Evaluation
Data Decomposition Orderig'asks —— '
: - | Data Sharing
Ways to group tasks to simplify L |
management of dependencies /] AN
Algorithm | Given a decomposition,
Structure t h dat
Ways to order tasks for : ways to share data
' among tasks
correctness, other constraints Supporting g
Structures

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific C
University of Washington by Andrew

W

UNIVERSITY of
WASHINGTON

Implementation e
Mechanisms P

53

Algorithm Structure fundamental
Finding

i organizing principle
Organize around o g gp P

concurrent tasks f /

Algorithm Structure 7
|Organize by Tasks Organize by Data Decomposition . Organize by Flow of Data \
Task Parallelism Geometric Decomposition Pipeline
Divide and Conquer Recursive Data Event-Based Coordination
Exploit potential t ;
P P . .. Supporting
concurrency in divide Structures
and conquer algorithms ¢
Implementation
e L e e \echanisms 2 — No:?';j A

Spring 2019 & s / UNIVERSITY of
o4 g =prng > Al WASHINGTON

University of Washington by Andrew Lumsdaine

Algorithm Structure

Fundamental
Finding i T
organizin rinciple
Concurrency & &P P

t e

Algorithm Structure 7

Organize by Tasks Organize by Data Decomposition . Organize by Flow of Data
Task Parallelism , Geometric Decomposition Pipeline
Divide and Conquer | Recursive Data \ Event-Based Coordination
O ' d/ I t >
rganize arouna a iarge : . .
dgt fruct that .g Supporting Organize around operations
dla structure tnat Is .
ey > SUCAIES on recursive data structure
broken into “chunks ¢
Implementation
e L e e \echanisms - No:?';j A/

9 University of Washington by Andrew Lumsdaine

Algorithm Structure

Fundamental . Finding Organize by sequence
.. . oncurrenc i
organizing principle y of independent stages
\\ t
Algorithm Structure
Organize by Tasks Organize by Data Decomposition . Organize by Flow of Data
Task Parallelism Geometric Decomposition Pipeline
Divide and Conquer Recursive Data Event-Based Coordination
Supporting Organize by inherent
Structtures communication among tasks
NORTHWEST INSTITUTE for ADVANCED COMF Implementation
g ettidd Mechanisms | Pacific Northwest | W

Spring 2019 & s / UNIVERSITY of
9 5pring : e TS gt of Evargy WASHINGTON

%6 University of Washington by Andrew Lumsdaine

Supporting Structures| _ Finding

Organize communication
and sharing between UEs

AN

Concurrency

:

Algorithm
Structure

Explicitly manage
shared data

:

Centralized control

L . Supporting Structures
distributing tasks -y :

T Program Structures

Translate loop

SPMD

Data Structuies

/ Safely share
a queue

/

Shared D'ata

// Manage array

bodies into tasks |} Manager/Worker

Shared Queue

i [Loop Parallelism

’/ data partitioned

Distributed Array /| | among UEs

N
Sets of N

dynamic tasks “ Fork/Join

ORTHWEST INSTITUTE for ADVANCED COMP b IEURI

57 AMATH 483/583

University of Washington by Andrew Lumsdaine

Mechanisms

UNIVERSITY of
WASHINGTON

Implementation Mechanisms

Finding
Concurrency

i

Algorithm
Structure

Manage task
lifetimes

i

Enforce ordering

constraints
Structures

Supporting needs to be when UEs

Get data where it

don’t share memory

N ¥

\Qplementation Mechanisms

AMATH 453/5863 High-Pertormance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

aaaaaaaaaa of
WASHINGTON

Stay Tuned

e C++ threads
« C++ async()
e C++ atomics

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : T_ i UNIVERSITY of
. . . : P> Ry WASHINGTON
University of Washington by Andrew Lumsdaine

Thank you!

NORTHWEST INSTITUTE for ADVANCED COMPUTING - \7’/ w
Pacific Northwest / /5

NATIONAL LABORATORY

R UNIVERSITY of
AMATH 483/583 High-Performance Scientific Computing Spring 2019 3 WASHINGTON

60 University of Washington by Andrew Lumsdaine

Creative Commons BY-NC-SA 4.0 License

0 0,

© Andrew Lumsdaine, 2017-2019

Except where otherwise noted, this work is licensed under

https://creativecommons.org/licenses/by-nc-sa/4.0/

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 / S o[unNiversiTY,
University of Washington by Andrew Lumsdaine / preet =

NORTHWEST INSTITUTE for ADVANCED COMPUTING - \7’/ 'w
Pac'rﬁgNorthwest / /5

IONAL LABORATORY

AMATH 483/583 High-Performance Scientific Computing Spring 2019 ‘ 5 A
University of Washington by Andrew Lumsdaine s L2

UNIVERSITY of

63 WASHINGTON

NORTHWEST INSTITUTE for ADVANCED COMPUTING - \7’/ 'w
Pac'rﬁgNorthwest / /5

IONAL LABORATORY

AMATH 483/583 High-Performance Scientific Computing Spring 2019 ‘ 5 A
University of Washington by Andrew Lumsdaine s L2

UNIVERSITY of

64 WASHINGTON

NORTHWEST INSTITUTE for ADVANCED COMPUTING - \7’/ 'w
Pac'rﬁgNorthwest / /5

IONAL LABORATORY

AMATH 483/583 High-Performance Scientific Computing Spring 2019 ‘ 5 A
University of Washington by Andrew Lumsdaine s L2

UNIVERSITY of

65 WASHINGTON

Parallel Computing with Processes

NORTHWEST INSTITUTE for ADVANCED COMPUTING ~ W
Pacific Northwest -

UNIVERSITY o

of
WASHINGTON

- AMATH 483/583 High-Performance Scientific Computing Spring 2019 €/ RS A
1 for the US. Department of Energy

University of Washington by Andrew Lumsdaine

Parallel Computing with Processes Process 0

J k _ e
—> J

— X Process 1
/

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : T_ i UNIVERSITY of
. . . : P> Ry WASHINGTON
University of Washington by Andrew Lumsdaine

Parallel Computing with Processes Process 0
J k T

Process 1

/

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : T_ i . UNIVERSITY of
. . . : P> Ry WASHINGTON
University of Washington by Andrew Lumsdaine

Parallel Computing with Processes

for (int i = 0; i < A.numRows(); ++i)

J k - for (int j = 0; j < B.numCols(); +
J for (int k = 0; k < A.numCols();
i 1 —— 7 - C(i,j) += A(i,k) * B(k,j);
<~ = na)
\\‘ \J I s — +
j for (int i = 0; i < A.numRows(); ++i
 — —> j for (int j = 0; j < B.numCols(); +-
‘ . . _— for (int k = 0; k < A.numCols();
1 1 ~ C(i,j) += AGi,k) * B(k,j);
k ~ }
~ }
\\ }
Can’t index from
for (int k = 0; k < A.numCols(); ++k) { different process b/c
C(i,j) += A(i,k) * B(k,j); different address space

W

NORTHWEST INSTITUTE for ADVANCED COMPUTING
=0 UNIVERSITY of

AMATH 483/583 High-Performance Scientific Computing Spring 2019 / lly (i Sl
University of Washington by Andrew Lumsdaine / i e S

Pacific Northwest
NATIONA RATO

69

Parallel Computing with One Process

k for (int i = 0; i < A.numRows(); ++i)

J
— _—] for (int j = 0; j < B.numCols(); +-
. _ > for (int k = 0; k < A.numCols();
1) C(i,j) += A(i,k) * B(k,j);

}

K }

for (int i = 0; i < A.numRows(); ++
for (int j = 0; j < B.numCols(Q);
for (int k = 0; k < A.numCols()
C(i,j) += A(i,k) * B(k,j);

}
}
}

W

NORTHWEST INSTITUTE for ADVANCED COMPUTING ¢
Pacific Northwest
NATIONAL LABORATORY UNIVERSITY of

70 AMATH 483/5.83 ngh-Performance Scientific Computmg Spring 2019 Py Operoted by Bamcte WASHINGTON
University of Washington by Andrew Lumsdaine

Parallel Computing with One Process

J k

— > — j

) AT

for (int i = 0; i < A/numRows(); ++i) { for (int i = 0; i < A.numRows(); ++i) {
for (int j = 0; #< B.numCgls(); ++j) { for (int j = 0; j < B.numCols(); ++j) {
for (int k¥ = 0; k < A.numCols(); ++k) { for (int k¥ = 0; k < A.numCols(); ++k) {
C(i,j) += A(i,k) * B(k,j); C(i,j) += A(i,k) * B(k,j);
+ }
+ +
} }

NORTHWEST INSTITUTE for ADVANCED COMPUTING
UNIVERSITY of

AMATH 483/583 High-Performance Scientific Computing Spring 2019 ‘ - Sl
University of Washington by Andrew Lumsdaine / -~ o

Parallel Computing with One Process

J k .
— > —_ J
_—
1 1
k: l

- — o * N -
\\\ | N

\ ~ —

o

for (int i = 0; i < A.numRows(); ++i) { A .numRows () ; ++1i) {

for (int j = 0; j < B.numCols(); ++j) { for (in 0; .numCols(); ++j) {
for (int k¥ = 0; k < A.numCols(); ++k) { for (int'k = 0; k < AMMumCols(); ++k) {
C(i,j) += A(i,k) * B(k,3); C(i,j) += A(i,k) * B(k,j);
} }
} }
} }

NORTHWEST INSTITUTE for ADVANCED COMPUTING
UNIVERSITY of

AMATH 483/583 High-Performance Scientific Computing Spring 2019 ‘ - Sl
University of Washington by Andrew Lumsdaine / -~ o

Parallel Computing with One Process

J k

— —_ j

A AT

for (int i = Q3 i < /i) { for (int i = 0; i < A.numRows(); ++i) {
for (int j = ©; j . 0 ++49) {{ for (int j = 0; j < B.numCols(); ++j) {
for (imt k = 0; &k < A mumdisQ);/2;-kd+K) { for (int k = 0; k < A.numCols(); ++k) {

C@,j) += AGE, W) * Blk,jP); C(i,j) += A(i,k) * B(k,j);

NORTHWEST INSTITUTE for ADVANCED COMPUTING
UNIVERSITY of

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : e A Ior
University of Washington by Andrew Lumsdaine / -~ e

Parallel Computing with One Process

J k .
_—
))
| I
- o * N
\\\ .\\
'\\)
for (int i = 0; i < A.numRows()/2; ++i) { for (intos# A.humRAwB@nRows{) ;{ ++i) {
for (int j = 0; j < B.numCols(); ++j) { for (infoy & -1y lathCots§); {++3) {
for (int k = 0; k < A.numCols()/2; ++k) { for (infok Gt dlLs &) A2 ATkusCAla@nC oK) ;{ ++k)
C(i,j) += A(i,k) * B(k,j); C(i,j) GE A0 40 MIBRR,) Bk, j);
+ } }
+ } }
} } ¥

NORTHWEST INSTITUTE for ADVANCED COMPUTING
UNIVERSITY of

AMATH 483/583 High-Performance Scientific Computing Spring 2019 ‘ lly T, Sl
University of Washington by Andrew Lumsdaine / alntas -

Use Same Function in Both Cases

J k _
_ _— J
. —_—
1 1
S l L Need to run
il] \\ them in
till nee N - parallel to
N N .
to run two SN get improved
NS
separate // performance
Instances
for (int i = iStart; i < iStart/A A.numRows()/2; ++i) { ///////////

for (int j = 0; j < B.numColfO; ++j) { P
for (int k = kStart; k < kStart + A.numCols()/; ++k) {
. C(i,j) += A(i,k) * B(k,j);

NORTHWEST INSTITUTE for ADVANCED COMPUTING ¢
i t / /s

of
WASHINGTON

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Use Same Function in Both Cases un this
J k ‘
_ 7 v j ///

Zl I

for (int i = iStart; i < iStart + A.numRows()/2; ++i) {
for (int j = 0; j < B.numCols(); ++j) {
for (int k = kStart; k < kStart + A.numCols()/2; ++k) {
C(i,j) += A(i,k) * B(k,j);

¥ int iStart = O;

)
int kStart 0;

}

for (int i = iStart; i < iStart + A.numRows()/2; ++i) {
for (int j = 0; j < B.numCols(); ++j) {
for (int k = kStart; k < kStart + A.numCols()/2; ++k) {
C(i,j) += A(i,k) * B(k,j);

} int iStart = A.numRows()/2;
} int kStart = A.numCols()/2;

Improved

e

performance?

NORTHWEST INSTITUTE for ADVANCED COMPUTING

76

Then this

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : . L
University of Washington by Andrew Lumsdaine / - T

W

UNIVERSITY of
WASHINGTON

Pacific Northwest
NAT ATORY

Use Same Function in Both Cases

J k ,
(?)

k .
J same time

N

Run this And this
/ /

for (int i = iStart; i < iStart + A.numRows()/2; ++i) {
for (int j = 0; j < B.numCols(); ++j) {
for (int k = kStart; k < kStart + A.numCols()/2; ++k) {

for (int i = iStart; i < iStart + A.numRows()/2; ++i) {
for (int j = 0; j < B.numCols(); ++j) {
for (int k = kStart; k < kStart + A.numCols()/2; ++k) {
C(i,j) += A(i,k) * B(k,j); C(i,j) += A(i,k) * B(k,j);
y ’ int iStart = 0; 3 ’ int iStart = A.numRows()/2;
int kStart = O; } int kStart = A.numCols()/2;

3

W

NORTHWEST INSTITUTE for ADVANCED COMPUTING — —
Pacific Northwest
L e UNIVERSITY of

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : . L
7 University of Washington by Andrew Lumsdaine / - T WASHINGTON

Some Terminology In separate
address
Operations SPACes
occur at Parallel Distributed (memory)
the same
time Connotation
~~_| of “loose

Connotation coupling
of “tight
coupling” Order. of
operations
doesn’t
matter

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 | S g UNIVERSITY of
. . . N for thee 1L ¥ Enecgy WASHINGTON
University of Washington by Andrew Lumsdaine |

Running Things “At the Same Time”

» Historically, threads evolved as a concurrency mechanism, not
parallelism

« Enabled OS and processes to do multiple things “at the same time’
« Can be used for performance if threads are executed in parallel

J

NORTHWEST INSTITUTE for ADVANCED COMPUTING
P e v

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : [—
University of Washington by Andrew Lumsdaine ! S D —

IIIIIIIIIII

Running Things “At the Same Time” in C++

#include <tostream> PU“ in thread
#include <thread> — .]
using namespace std; I|brary
void sayHello() { Slmple
cout << "Hello World" << endl; function
}
Create a
Join back to [int meinO { thread

main thread | thresd helloThread(sayHello);

N\

helloThread. join(); \ That runs this

return O; function
}

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 / e UNIVERSITY of
. . . N for Kegy WASHINGTON
University of Washington by Andrew Lumsdaine /

Multithreading

}

std: :thre

for (int
tid [i]
for (int

tid[i].

return O;

}

void sayHello(int tnum) {
cout << "Hello World. I am thread " << tnum << endl;

int main() {

ad tid[16];

i =0; i< 16; ++i)
= thread (sayHello, i);

i=0; i< 16; ++i)
join();

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019

81 University of Washington by Andrew Lumsdaine

Pacific Northwest
NATIONAL LABORATORY

Proxly Operated by Bavese
for the LS. Department of Energy

W

UNIVERSITY of
WASHINGTON

Multithreading Program

OUtpUt
void sayHello(int tnum) { S./a.out /
) N R Hello World. | am thread Hello World. | am thread Hello
World. | am thread Hello World. | am thread Hello World. |
inztsz‘tll(lieid L1l am thread Hello World. | am thread Hello World. | am
’ thread Hello World. | am thread Hello World. | am thread
foziéi[ri? ! zhg;ai zs?};l Hﬁ . 02Hello World. | am thread Hello World. | am thread 13Hello
L, D8 World. | am thread 5Hello World. | am thread Hello World. |
for (int i = 0; i < 16; ++i) am thread 6Hello World. | am thread 47Hello World. | am
tid[i].join(); thread 8
return O;
| ¢ | 910

o 111213

Concurrency? - s

Parallelism? +——— 15

NORTHWEST INSTITUTE for ADVANCED COMPUTING ~ A" V4
Paciicforitwest |

UNIVERSITY of
WASHINGTON

AMATH 483/583 High-Performance Scientific Computing Spring 2019 ‘ .»-.,m.r».,.,,.mmm
for the LS. Papartmant of Energy

82 University of Washington by Andrew Lumsdaine

Multithreading Call thread

main() | constructor

v / R .
un in separate
/\ thread
/

sayHello() sayHello() sayHello()

yd

Run in separate _
thread Run in separate

\ thread

Join

NORTHWEST INSTITUTE for ADVANCED COMPUTING

{ NAT TORY / >
i - i ifi i i Yy -~~~ [UNIVERSITY o
AMATH 483/583 ngh Performance Scientific Computmg Spring 2019 e e WASHINGTON
University of Washington by Andrew Lumsdaine |

Why the Jumbled Output

void sayHello(int tnum) { S./a.out
) N R Hello World. | am thread Hello World. | am thread Hello
World. | am thread Hello World. | am thread Hello World. |
inztzéf:;ieid alie] am thread Hello World. | am thread Hello World. | am
B ’ thread Hello World. | am thread Hello World. | am thread
for (int i = 0; i < 16; ++i) 02Hello World. | am thread Hello World. | am thread 13Hello
ERELEL) = o (FapiEeiiio, : World. | am thread 5Hello World. | am thread Hello World. |
for (int i = 0; i < 16; ++i) am thread 6Hello World. | am thread 47Hello World. | am
tid[i].join(Q); thread 8
return O;
. 910

Concurrency! +— 111213

15

NORTHWEST INSTITUTE for ADVANCED COMPUTING \7’/ 'w
PacifigNonhvveigm ‘

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : L &ng‘;l";g]’{(;&

84 University of Washington by Andrew Lumsdaine

Another Example

int value = 0;

int main() {
std: :thread tid[16];

for (int 1 = 0; i < 16; ++i)
tid[i] = thread (sayHello, i);

for (int i = 0; i < 16; ++i)
tid[i].join();

cout << "Final value is " << value << endl;

return O;

}

NORTHWEST INSTITUTE for ADVANCED COMPUTING ~ 'w
Pac'rﬁgNorthwesTg /

UNIVERSITY of

AMATH 483/583 High-Performance Scientific Computing Spring 2019 SR

89 University of Washington by Andrew Lumsdaine

Bavene
Einer

Example

.Ja.outHello World. | am thread Hello World. | am thread Hello World. |
am thread Hello World. | am thread Hello World. | am thread Hello
World. | am thread Hello World. | am thread Hello World. | am thread
Hello World. | am thread Hello World. | am thread 5302Hello World. |
am thread Hello World. | am thread 64Hello World. | am thread Hello
World. | am thread 1Hello World. | am thread 789Value is Value is Value
is Hello World. | am thread Value is 1011Value is Value is 1213Value is
14Value is Value is Value is 000150Value is Value is O0Value is Value is

OValue is 000Value is 000000

Not Goodl-

Final value is 1

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Race condition

Pacific Northwest
NATIONAL LABORATORY

Procadly Operated by Batese
for the LS. Department of Enen

||||||||||| of
WASHINGTON

Yet Another Example (Sequential, Synchronous)

int bank_balance = 300;

void withdraw(const string& msg, int amount) {
int bal = bank_balance;
string out_string = msg + " withdraws " + to_string(amount) + "\n";
cout << out_string;
bank_balance = bal - amount;

}

int main() {
cout << "Starting balance is " << bank_balance << endl;

withdraw("Bonnie", 100);
withdraw("Clyde", 100);

cout << "Final bank balance is " << bank_balance << endl;

return O;

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

87

Pacific Northwest

NATIONAL LABORATORY
Bavene
ne of Energ

W

UNIVERSITY of
WASHINGTON

Yet Another Example (Concurrent)

int bank_balance = 300;

void withdraw(const string& msg, int amount) {
int bal = bank_balance;
string out_string = msg + " withdraws " + to_string(amount) + "\n";
cout << out_string;
bank_balance = bal - amount;

by

int main() {
cout << "Starting balance is " << bank_balance << endl;

thread bonnie(withdraw, "Bonnie", 100);
thread clyde(withdraw, "Clyde", 100);

bonnie. join();
clyde.join();

cout << "Final bank balance is " << bank_balance << endl;

return O;

NORTHWEST INSTITUTE for ADVANCED COMPUTING

W

UNIVERSITY of
WASHINGTON

AMATH 483/583 High-Performance Scientific Computing Spring 2019

88 University of Washington by Andrew Lumsdaine

Review

Process is an abstraction for resource allocation
Thread is an abstraction for execution
Concurrency vs Parallelism vs Distributed

C++ threading library

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performan
University of Washington by Andrew Lumsdaine

Pacific Northwest
NATIONAL LABORATORY

ientific Computing Spring 2019 . > /' UNIVERSITY,
ce Seien PUtng =pring 2 e T2, Pt of By WASHINGTON

Thank You!

NORTHWEST INSTITUTE for ADVANCED COMPUTING - \7’/ w
Pacific Northwest / /5

NATIONAL LABORATORY

R UNIVERSITY of
AMATH 483/583 High-Performance Scientific Computing Spring 2019 3 WASHINGTON

90 University of Washington by Andrew Lumsdaine

Example

 Find the value of 7T

« Using formula 45

1
4
T = dx
o 1+ 22

0.0 0.2 0.4 0.6 0.8 1.0

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : - T_ . UNIVERSITY of
. . . : 3 P> Ry WASHINGTON
University of Washington by Andrew Lumsdaine)

Discretization

4-5 | ! ! !

4.0 -

35 T _
3.0 \]

2.5 T~]

2.0

>

0.0 0.2 0.4 0.6 0.8 1.0

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : S =5 ‘ UNIVERSITY of
. . . N 3 for thee LIS Energy WASHINGTON
University of Washington by Andrew Lumsdaine)

Numerical Quadrature

4.5 . . .

4.0

3.5

3.0 \

2.5 0

>

2.0 h

I+1

0.0 0.2 0.4 0.6

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

Numerical Quadrature

4.5
4.0 4 = 4
| — 1+2(i)2 14+ (ih)?
3.5 |
// \ 4
3.0 A=h —— |
> ,< 1+ (Zh)
/
2.5 0 1 , — i
> i+1
1.5 N-1
1.0 y
0.0 0.2 0.4 0.6 0.8 1.0

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : k _RY '''''''''''
University of Washington by Andrew Lumsdaine S D —

Numerical Quadrature

4-5 | ! ! !

4.0 N-—-1

3.5 — 1+ (th)? | -

3.0 \ |

2.5 0

20 h 3 - . \

I+1

>

0.0 0.2 0.4 0.6 0.8 1.0

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 ‘ S e ‘ UNIVERSITY of
. . . N for thee 1L f Energy WASHINGTON
University of Washington by Andrew Lumsdaine

Numerical Quadrature

4.5 | | ! !
double pi = O;
4.0 — for (int i = 0; i < N; ++i) { 1
35 4 pi += h * 4.0 / (1 + i*h*ixh);
. —} .
3.0 \ |
>

2.5 .

R i+
1.5 N-1
1.0 y

0.0 0.2 0.4 0.6 0.8 1.0

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 ‘ SR e ‘ UNIVERSITY of
. . . N for the LS. 1t of Enengy WASHINGTON
University of Washington by Andrew Lumsdaine

Finding Concurrency

Finding Concurrency

Decomposition
Group Tasks

{

Order Tasks

{

Data Sharing

Task Decomposition

Data Decomposition

Algorithm
Structure

!

Supporting
Structures

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific C
University of Washington by Andrew

Implementation Gy [W

NATIONAL LABORATORY
UNIVERSITY of

Mechanisms T e WASHINGTON

97

Finding Concurrency Partial sums are Can be computed
all independe/nt// concurrently

45 T T I

i i i
4.0l \ i |

3.5 i

3.0 \ |

2.5 0

2.0 3 T~

I+1

>

0.0 0.2 0.4 0.6 0.8 1.0

NORTHWEST INSTITUTE for ADVANCED COMPUTING

) NATIONA! ATORY / 2
i - i ifi i i ERSITY o
AMATH 483/5.83 ngh Performance Scientific Computmg Spring 2019 e e #X%LINGTO{NI
University of Washington by Andrew Lumsdaine

Finding Concurrency Sum over
partial sums
4.5 . . . f

Partial sum

| I / 1 /\(
4.0 \ L i,
— ks [i<(k+1)N)
3.5 ~ h
3.0 - k=0 i 1=kN i
- o~
2.5 0 1 , —~ i
2.0 3 . T
! i+1
15 w
1.0
0.0 0.2 04 0.6 0.8 1.0

NORTHWEST INSTITUTE for ADVANCED COMPUTING

) NATIONAL L. ATORY / 2
AMATH 483/583 High-Performance Scientific Computing Spring 2019 e - UNIVERSITY of
. . . . for the ULS. Dy of Energy WASHINGTON
University of Washington by Andrew Lumsdaine

Finding Concurrency

Finding Concurrency
S — | Dependency Analysis |
Decomposition L |
; L Group Tasks
.| Task Decomposition | | f
/ | Data Decompossition | | Orderig'asks
Data Sharing
Decompose total || | =
sum into a sum of) N
partial sums Each task can be Algorithm Need to sum up
Structure .
computed T independent
concurrently SuEEsriie partial sums
Structures

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific C
University of Washington by Andrew

implementation [N B ¥, £

H of
100 Mechanisms o e Ly WASHINGTON

Alaorithm Structure

Partial sums are Finding
independent tasks Concurrency

!

Algorithm Structure
Organize by Tasks Organize by Data Decomposition . Organize by Flow of Data
Task Parallelism Geometric Decomposition Pipeline
Divide and Conquer Recursive Data Event-Based Coordination
Can be executed Supporting
in parallel Str”‘;‘“res
NORTHWEST INSTITUTE for ADVANCED COMF Implementation
Sk e Mechanisms | Pacific Northwest _ W

Spring 2019 & s [UNIVERSITY of
9 5pring : e TS gt of Evargy WASHINGTON

101 University of Washington by Andrew Lumsdaine

Supporting Structures| _ Finding

Concurrency

:

Algorithm Global sum (may or
Structure may not be shared)

: 7

Supporting Structures
Program Structures | . Data Structures
bodies into tasks Manager/Worker || | Shared Queue
\;\ . i ; . "
; Loop Parallelism L Distributed Array
Fork/Join

NORTHWEST INSTITUTE for ADVANCED coMP Jebisiiiietoy A AT
e Mechanisms == g Pecfichiortwest. -
102 o8 : i it WASHINGTON

University of Washington by Andrew Lumsdaine

Implementation Mechanisms

Use C++
async

Finding
Concurrency

i

Algorithm
Structure

No ordering
constraints

i

Supporting
Structures

N\

!

Use shared memory

LN

|
|
|
|
|
|
\

Synchronization

mplementation Mechanisms

LN

aaaaaaaaaa of

AMATH 453/5863 High-Pertormance Scientific Computing Spring 2019

University of Washington by Andrew Lumsdaine

WASHINGTON

Sequential Implementation (Two Nested Loops)

| double b = 1.0 / (double) intervals;~ | Discretization

For each set
of discretized Mi = 0.0;

points for (int k = 0; k < intervals; k += blocksize) {
| double partial_pi = 0.0;
Compute ——for—(int 1 = k; i < (k+blocksize); ++i) {
partial sum partial_pi += 4.0 / (1.0 + (i*h*i%*h));
}

__pi += h * partial_pi;

Accumulate }
final sum

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 / ety Opereiod 1y . UN§VEIR13”’1Y of
University of Washington by Andrew Lumsdaine / S D —

Threads vs Tasks

void sayHello(int tnum) {
cout << "Hello World. I am thread " << tnum << endl;

} \
int main() {
std: :thread tid[16];

Task

Launch |—1 “fork”

for (int 1 = 0; i < 16; ++i)

tid[i] = thread (sayHello, 1i); threads
for (int i = 0; i < 16; ++i) Wait for tasks | — “join”
tid[i].join(); - to finish

return O;

}

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 / - UNIVERSITY of
. . . : e i WASHINGTON
University of Washington by Andrew Lumsdaine /

Th reads void partial_pi(unsigned long begin, unsigned long end) {
Thread // double partial_pi = 0.0;

for (unsigned long i = begin; i < end; ++i) {

returns void partial_pi += 4.0 / (1.0 + (ixh*ixh));
+
return partial_pi;
Oops ¥
int
main(int argc, char *argv[])
How do we get {

partial sums? double h = 1.0 / (double) intervals;

ouble pi = 0.0;

H g dat for &nt k = 0; k < intervals; k += blocksize) {
OW 40O we update \\
global total? pi += h * partial_pi;
+

std::cout << "pi is approximately " << pi << std::endl;

NORTHWEST INSTITUTE for A return O;
}
106

Threads

Task

Assign task
to thread

NORTHWEST INSTITUTE for AL

void partial_pi(unsigned long begin, unsigned long end, double h, double& pi)

-
double partial_pi = 0.0;
for (unsigned long i = begin; i < end; ++i) {
partial_pi += 4.0 / (1.0 + (i*hx*ixh));
}
pi += h*partial_pi;
}
int
main(int argc, char *argvl[])
{
std: :vector<std::thread> threads;
double h = 1.0 / (double) intervals;
double pi = 0.0;
| for (unsigned long k = 0; k < num_blocks; ++k) {

threads.push_back(std: :thread(partial_pi,
k*blocksize, (k+1)*blocksize, h, std::ref(pi)));
}

for (unsigned long k = 0; k < num_blocks; ++k) {
threads [k] . join();
}

std::cout << "pi is approximately " << pi << std::endl;

return O;

Threads

L‘?Ca' Shared
variable

variable
/ N

void partial_pi(Mnsigned long begin, unsigned long end, double h,
double partial_pi = 0.0;
for (unsigned long i = begin; i < end; ++i) {
partial_pi += 4.0 / (1.0 + (i*hx*ixh));

+
pi += h*partial_pi;

N\

Y

double& pi) {

N\

Update shared
variable

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

Threads

int main(int argc, char *argv[]) {

Container for

created threads

double h = 1.0 / (double) intervals; Have to explicit|

std::vector<std::thread> threads; tag this as a
referen

double pi = 0.0; eference

Thread
constructor

for (unsigned long k = 0; k < num_blocks; ++k) {
threads.push_back(

std: :thread(
partial_pi, k*blocksize, (k+1)*blocksize, h, std::ref(pi)));

Function that

will be the task

k = 0; k < num_blocks; ++k) {

Arguments to
the function

std::cout << "pi is appreximately " << pi << std::endl;

return 0; We are invoking
} std::thread, not
AMATH 483583 Hih-Po partial pi . = s

Results

Correct
$./thrpi ////
pli is approximately 3.14159
. Correct
$./thrpi ////
pi is approximately 3.14159 Exactly same
program!
Incorrect! /
/ \ What
happened?

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 / St e UNIVERSITY of
. . . N for thee 1L ¥ Enecgy WASHINGTON
University of Washington by Andrew Lumsdaine /

Name This Famous Couple

Bonnie Parker

Clyde Barrow

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

Bonnie and Clyde Use ATMs

int bank_balance = 300;

void withdraw(const string& msg, int amount) {
int bal = bank_balance;
string out_string = msg + " withdraws " + to_string(amount) + "\n";
cout << out_string;
bank_balance = bal - amount;

¥

int main() {
cout << "Starting balance is " << bank_balance << endl;

thread bonnie(withdraw, "Bonnie", 100);
thread clyde(withdraw, "Clyde", 100);

bonnie. join();
clyde.join();

cout << "Final bank balance is " << bank_balance << endl;

return O;

NORTHWEST INSTITUTE for ADVANCED COMPUTING , ‘waﬂ’// 1"\"
Pacific Northwest /

NATIONAL LABORATORY

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of

112 WASHINGTON

Procsdly Bavene
for the UL of Energ,

Withdraw Function

int bank_balance = 300; Get balance

void withdraw(const string& Misg, int amount) {
int bal = bank_balance;
string out_string = msg + " withdraws " + to_string(amount) + "\n";
cout << out_string;
bank_balance = bal - amount;

~| Compute the
Save new new balance

balance

NORTHWEST INSTITUTE for ADVANCED COMPUTING
UNIVERSITY of

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : o - SR
University of Washington by Andrew Lumsdaine et =

Making Concurrent Withdrawals

int main() {

cout << "Starting balance is " << bank_balance << endl;
Launch ——
threads thread bonnie(withdraw, "Bonnie", 100);

thread clyde(withdraw,—"Clyde", 100); Run withdraw

bonnie. join(); \\\\\ function

clyde.join(); Constructor

cout << "Final bank balance is " << bank_balance << endl;

G UF . Wait for
completion

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 / S g (UNIVERSITY of
University of Washington by Andrew Lumsdaine / preet =

Bonnie and Clyde Use ATMs

$./a.out

Starting balance is 300
Bonnie withdraws 100
Clyde withdraws 100

Is this
correct?

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 / - i (UNIVERSITY of
University of Washington by Andrew Lumsdaine / 5 -

What Happened? |Bonnie’s thread,
bal =300

void| withdraw st string& msg, int amount) { CIyde's thread,
int| bal ank_balance; -
string out_s = msg + " withdraws " + to_string(amt) bal = 300

I void withdr onst string& msg, int amount) {

. int bal™= bank_balance;
Context switch string out_s = msg + " withdraws " + to_string(amt) + "\n";

cout << out_s; .
bank_balance = bal - amount; Context switch

} | \

_] cout << out_s; PrOfIt!
bal is still 300 bank_balance = bal - amount;
— ¥ N\
bank_balance bal is still 300
gets 200 ,

bank_balance

AMATH 4 | e o — Y of
116 g e t S 2 O O ‘ e S Do of oy WASHINGTON
‘l

What Happened: Race Condition

« Final answer depends on instructions from different threads are
interleaved with each other

« Often occurs with shared writing of shared data
« Often due to read then update shared data
 What was true at the read is not true at the update

NORTHWEST INSTITUTE for ADVANCED COMPUTING
P e v

AMATH 483/583 High-Performance Scientific Computing Spring 2019 Precelly Opersted by Bamese
University of Washington by Andrew Lumsdaine] S D —

IIIIIIIIIII

Critical Section Problem

int bank_balance = 300;

void withdraw(const string& msg, int amount) A{
int bal = bank_balance;
string out_string = msg + " withdraws " + to_string(amount) + "\n";
cout << out_string;
bank_balance = bal - amount;

- \
N\
We want to tell When some thread is executing
operating system not to this critical section, no other

run anything else here thread may execute it

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 ‘ S e ‘ UNIVERSITY of
. . . N for thee 1L f Energy WASHINGTON
University of Washington by Andrew Lumsdaine

The Critical-Section Problem

n processes all competing to use some shared data

« Each process has a code segment, called critical section, in which the
shared data is accessed.

* Problem — ensure that when one process is executing in its critical
section, no other process is allowed to execute in its critical section.

 What do we mean by “execute in its critical section™?

NORTHWEST INSTITUTE for ADVANCED COMPUTING ~ W
Pacific Northwest -

AMATH 483/583 High-Performance Scientific Computing Spring 2019 T
University of Washington by Andrew Lumsdaine 1 S D —

UNIVERSITY o

of
119 WASHINGTON

Solution to Critical-Section Problem

 Mutual Exclusion - If process Pi is executing in its critical section,
then no other processes can be executing in their critical sections

* Progress - If no process is executing in its critical section and there
exist some processes that wish to enter their critical section, then the
selection of the processes that will enter the critical section next
cannot be postponed indefinitely

 Bounded Waiting - A bound must exist on the number of times that
other processes are allowed to enter their critical sections after a
process has made a request to enter its critical section and before
that request is granted
— Assume that each process executes at a nonzero speed
— No assumption concerning relative speed of the N processes

NORTHWEST INSTITUTE for ADVANCED COMPUTING \xf’/ 'w
P e v :

AMATH 483/583 High-Performance Scientific Computing Spring 2019 % s / f
University of Washington by Andrew Lumsdaine 3 (lohot ron e e PVASEINGION

UNIVERSITY o

120

Critical Section Problem

int bank_balance = 300;

void withdraw(const string& msg, int amount) A{
int bal = bank_balance;
string out_string = msg + " withdraws " + to_string(amount) + "\n";
cout << out_string;

| bank_balance = bal - am

A

\ N

=3

Let’s just think about

This is a critical section .
mutual exclusion for now

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : T_ i UNIVERSITY of
. . . : P> Ry WASHINGTON
University of Washington by Andrew Lumsdaine

Critical Section Problem

bool lock = false; Test if another
thread is holding
the lock

void withdraw(const-String& msg, int amount) {
while (lock == true)

int bank_balance = 300;

Take the lock

N Spin if it is
:LOCk = true;\
Execute " int bal = bank balance: Fall through when lock == false
critical string out_string = msg + " withdraws " + to_string(amount) + "\n";

cout << out_string;

section bank_balance = bal - amount;

Release lock -—}‘ lock = false;

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 / e UNIVERSITY of
. . . N for Kegy WASHINGTON
University of Washington by Andrew Lumsdaine /

Aside

bool lock = false;
int bank_balance = 300;
void withdraw(const string& msg, int amount) {
string out_string = msg + " withdraws " + to_string(amount) + "\n";

cout << out_string;
bank_balance -= amount;

} \
\

Still a race

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

W

UNIVERSITY of
WASHINGTON

Pacific Northwest
NATIONAL LABORATORY

123

Aside

bool lock = false;

int bank_balance = 300;

void withdraw(const string& msg, int amount) {

Then write

\\\\\ string out_string = msg + " withdraws " + to_string(amount) + "\n";

\\\\ cout << out_string;
bank_balance = bank_balance - amount;

/.
/ A

Still a race Read Compute

NORTHWEST INSTITUTE for ADVANCED COMPUTING ~ A" V4
Paciicforitwest |

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of

124 WASHINGTON

Critical Section Problem

Critical
section

NORTHWEST INSTITUTE for ADVANCED COMPUTING

bool lock = false;
int bank_balance = 300;

void withdraw(const string& msg, int amount) {

string out_string = msg + " withdraws " + to_string(amount) + "\n'";

cout << out_string;

bank_balance = bank_balance - amount;

AMATH 483/583 High-Performance Scientific Computing Spring 2019

125 University of Washington by Andrew Lumsdaine

Pacific Northwest
NATIONAL LABOI \TORY

Proodly Operated by Baese
for the LS. Department of Energ)

W

UNIVERSITY of
WASHINGTON

Solution (?)

Take the lock

Execute
critical
section

Release lock

T~

+

bool lock = false;

int bank_balance = 300;

| —

Test if another
thread is holding

the lock

string out_stri

cout << out_stTring;

\ whﬂW

b

lock = trué?“‘————_________

void withdraw(const string& msg, int amount) {

Spinifitis

= msg + " withdraws " + to_string(amount) + "\n";

Fall through when lock

== false

bank_balance = bank_balance - amount;

lock = false;

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

126

W

UNIVERSITY of
WASHINGTON

Solution (?)

Common
pattern (when

correct)

Take the lock

AN
N

bool lock = false;

int bank_balance = 300;

Test if another
thread is holding
the lock

void withdraw(const string& msg, int amount) {

string out_stri

cout << out_stTring;

whilW Spinifitis

Lock might be
taken between the
test and the set

//&bck = trué?“‘—————________

= msg + " withdraws " + to_string(amount) + "\n";

Fall through when lock

== false

bank_balance = bank_balance - amount;

lock = false;

+

NORTHWEST INSTITUTE for ADVANCED COMPUTI problem for another

We’ve traded one
critical section

127

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

W

UNIVERSITY of
WASHINGTON

Synchronization Hardware

« Many systems provide hardware support for critical section code

« Uniprocessors — could disable interrupts
— Currently running code would execute without preemption
— Generally too inefficient on multiprocessor systems
» Operating systems using this not broadly scalable
 Modern machines provide special atomic hardware instructions
« Atomic = non-interruptable
— Either test memory word and set value
— Or swap contents of two memory words

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performan
University of Washington by Andrew Lumsdaine

Pacific Northwest
NATIONAL LABORATORY

ce Scientific Computing Spring 2019 > 0 | _UNIVERSITYo f
PUtng =pring & e S gt of Sy WASHINGTON

Test and Set

bool TestAndSet (bool& target) bool TestAndSet (bool *target)
{ {

bool rv = target; bool rv = *target;

target = TRUE; *target = TRUE;

return rv: return rv:
by \ \ Iy

These are the Implemented in
semantics, not the hardware as an
implementation invisible instruction

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 ‘ S e UNIVERSITY of
. . . N for thee 1L f Energy WASHINGTON
University of Washington by Andrew Lumsdaine

Compare And Swap

void CompareAndSwap (bool& a, bool& b)
{

bool temp = a;

a = b;

b = temp:

’ \ N\

void CompareAndSwap (bool *a, bool *b)
{

bool temp = *a;

*a = *Db;

*b = temp:
}

These are the
semantics, not the
implementation

Implemented in
hardware as an
invisible instruction

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

Correct Withdraw

int bank_balance = 300;
bool lock = false;

void withdraw(const string& msg, int amount) {
Under what string out_s = msg + " withdraws " + to_string(amt) + "\n";
cout << out_s;

condition will

we fall through? Nyhile (TestAndSet (lock) == true)—
l ;

Spin while the value is
true (another thread

What is the holds the lock)
bank_balance —= amount;
state of the
lock? lock = false; Release the lock
}

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 ‘ SR e ‘ UNIVERSITY of
. . . N for the LS. Dey of Energy WASHINGTON
University of Washington by Andrew Lumsdaine

Correct Withdraw

int bank_balance = 300;
bool lock = false;

void withdraw(const string& msg, int amount) {
string out_s = msg + " withdraws " + to_string(amt) + "\n";
cout << out_s;

What is the /jggle (TestAndSet (lock) == true) — ”Spin lock”
CPU doing? ’ (common pattern)
I bank’ balance -= amount;
How is it
affecting other [lock = false; Is this a go.od
threads? programming

ion?
NORTHWEST INSTITUTE for ADVANCED COMPUTII abStraCt|0n)

AMATH 483/583 High-Performance Scientific Computing Spring 2019 ‘ S e UNIVERSITY of
. . . N for thee 1L f Energy WASHINGTON
University of Washington by Andrew Lumsdaine

Parallel Speedup, Parallel Efficiency

Speedup on p Time to run problem | | Time to run problem
size n on one PU size n on p PUs

processing units
S(p) =
) T'(n,p)

Divided by

Efficiency on p Ideal parallel actual parallel
processing units | | execution time | | €xecution time

10" |

Speedup

| T(n1)/p _P@1)/T(p) _ SB) ..

Ep) = T(n,p) p p

NORTHWEST INSTITUTE for ADVANCED COMPUTING
J \TIONAL LABORATORY
AMATH 483/583 High-Performance Scientific Computing Spring 2019 / e - UNIVERSITY of
University of Washington by Andrew Lumsdaine / S D —

Superlinear

Scaling
- (fishy)

Parallel Speedup

10° | 1

Linear (ideal)

Speedup
=
o»—-

Sublinear (typical)

10° : —
10!

UNIVERSITY of
WASHINGTON

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Name This Famous Person

S| "validity of the single processor approach to
| achieving large-scale computing capabilities,”
AFIPS Conference Proceedings (30): 483—485,
1967.

Gene Amdahl (1922-2015)

Amdahl’s Law

NORTHWEST INSTITUTE for ADVANCED COMPUTING \vf’/ 'W'

Pacific Northwest
R i R . . i o NATIONAL LABORATORY J UNIVERSITY of
AMATH 483/5.83 ngh Performance Scientific Computmg Spring 2019 : Pty Ot e SR
University of Washington by Andrew Lumsdaine)

135

Limits to Parallelism (Amdahls’s Law) Sequential

Inherently - T'(n,1) / eXGClition time
sequential

|
Inherently < > < .
sequential aT'(n,1) (1 —)T (n, 1)\ Perfectly

\‘ parallelizable

T(?’L, 1) — OéT(?’L, 1) + (1 R O()T(n, 1)‘\ Perfectly
parallelizable

/T (n, 1)(a+ 1 — 0 Ideal speedup (for

Sequential parallelizable portion)

portion

'NSTITUTE for ADVANCED COMPUTING

Pacific Northwest
/| NATIONAL LABORATORY

UNIVERSITY of

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Limits to Parallelism (Amdahls’s Law)

Sequential
nherently | T(n,1) e execmition time
sequential

T
Speed = > >
beestp ol (n,1) (1—-a)T(n,1)
N \ Perfectly
S(p) = T, 1) — T(n, i) parallelizable

, 1
oo O P) = aJ

NORTHWEST INSTITUTE for ADVANCED COMPUTING

f NATION. BORATORY 25
AMATH 483/583 High-Performance Scientific Computing Spring 2019 ' o AR G
University of Washington by Andrew Lumsdaine / R

Limits to Parallelism (Amdahls’s Law) Perfectly

Inherently aT'(n,1) (1 —a)T(n,1) _— parallelizable
. - - >
sequential _
< >
I L)
| Speedup is the
- i\ To this ratio of this
T(nap)’p—)oo
T(n,1)
. 1 S(p) =+
lim S(p) = — (7, p)
p—00 o)

NORTHWEST INSTITUTE for ADVANCED COMPUTING

f NATION. BORATORY
AMATH 483/583 High-Performance Scientific Computing Spring 2019 ' o AR G
University of Washington by Andrew Lumsdaine / R

Limits to Parallelism (Amdahl’s Law)

Parallel Speedup

a = 0.05

10° —

Asym pfotically

approaches 20

10° 10?

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019

139 University of Washington by Andrew Lumsdaine

W

UNIVERSITY of
WASHINGTON

Limits to Parallelism No matter how
many cores added

Parallel Speedup

10° ¢ — , _
o= 0.01
- Not scalable
10° | | Exascale machines might ;
§ ' have millions of cores / 5
§ Asymptotically | |
i 10t } approaches 100 | |
On 1024 cores
10° . , —

NORTHWEST INSTITUTE for ADVANCED COMPUTING

igh- ientifi i i : ‘ RSITY o
AMATH 483/583 ngh Performance Scientific Computmg Spring 2019 / Pty Ot e &J:é‘glRNg]‘fO&
University of Washington by Andrew Lumsdaine /

There are no Limits (Gustafson’s Law)

* Doing the same problem faster and faster is not how we
use parallel computers

« Rather, we solve bigger and more difficult problems
 |.e., the amount of parallelizable work grows

ol (n,1) p(l —a)T(n,1)

T(n,p) =T(n,1)

NORTHWEST INSTITUTE for ADVANCED COMPUTING
CC BY-SA 3.0, https://en.wikipediaiorg/w/index.php2cunidal 7451775 oo | WASHINGTON

!
!
/

There are no Limits (

ol (n,1)
- —>-

tafson’s Law)

Perfectly
parallelizable

p(1 — a)T(nsA]

>

<

Ratio of non sped T(n,p) =T(n,1)

up to sped up

>

\

Parallel
performance

() :\a@(n,1)+p(1—a):ﬁ(n,1) _ aT(n,1)?Iz§l{I)a)T(n,1) — a+p(1—a)

T (n,p)

Bp) =) m—p | Jim Ep)=(1-a) |

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Pacific Northwest
NATIONAL LABORATORY

UNIVERSITY of
NNNNNNNNNN

Two Types of Scaling

Ideal
Parallel Speedup
Scalable

10° ¢ Weak scalin
o Strong scaling T Gustaf 5
§ Amdahl ustafson
2

10! | / |

Not scalable
10° — —
10° 10? 102

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

Multicore Architecture _
Any CPU in the

Coreisa g e last 4-5 years
N
FDREW +regs| |[¥ o7 Feen [pd
F r1 /< Instructions_ | ()
) | | D
Each runsits —{{gr] L? L2
r3
own sequence |_| | [E| b | Feteh [
. . — W — 2
of instructions | | 57 [15 | Loadstore S E =
i jF 0 Fetch L1 E D1
Each can access | 4] [@ () m “‘m D2
. R Load/Store
its own data R Tz\ L2 |
FEIR G
—»| |e I r5 Load/Store
| /
OR VSN Each has memory Bl might be shared !

.
144 AVATI hierarchy ' " pnvERSITY of

Running a Program

When a CPU is

one program

executing bytes from

Bytes from program
stored in memory

I | —+ B Fetch T{
It isn’t executing | oot F =
— R Read 12 L
bytes from another 1| e £]
e LML R Write [Load/Store
> e TTTTTTTT] /
cycle

(I.ncltudlnifrom the OS) How does another How did the
Just another program program run? bytes get here?

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

Multicore Architecture

Cores are a
resource
managed by
the OS

cycle

NORTHWEST INSTITUTE for ADVANCED COMPUTING i ’

jF 0 Fetch 4{
r1i <Instructi£s i ()
D
R r2 L2
3| [w] -2 o
— I r5 Load/Store
—N
n jF 0 Fetch L1
—] r1 Instructiqgns (|)
— D
R r2 L2
r3
: ~
w| -2 o
I 5 Load/Store

L3

N

1

46

LLLLL

ccccc

AMATH 483/583 High-Performance Scientific Comss sws:”
University of Washington by Andrew Lui o

P

1 __Z15hoistediul tiplyRK6NatrixS1_RS_
2align 4, 0x90
: : #
cfi_startp
BB40)
pushq Yirbp
£5 _otfset Tebp, -16
novg
efi bp
pushq
pushq Ur13
pushq Ur12
trbx
cfi_offset Wrbx, -56
o 48

L~

12
8(%rdx), %rax
Yxax, ~104Clrbp) ## 8-byte Spil

xxxxxxxxxxxxxxxxxxxxxxxxxxxxx

A process may
use one or
more cores

N
~N

Memory is not
shared between
processes

WASHINGTON

