NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583
High Performance Scientific Computing

Lecture 11:
Threads, Shared Memory Parallelism

Andrew Lumsdaine

Northwest Institute for Advanced Computing
Pacific Northwest National Laboratory
University of Washington

Seattle, WA

Overview

Multiple cores

Threads

Parallelization strategies
Correctness

Performance

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

nnnnnnnnnnnn

Flynn’s Taxonomy (Aside Anyone in HPC must
know Flynn’s taxonomy

« Classiclassification of parallel architectures (Michael Flynn, 1966)

P I a i n O | d Single Instruction Multiple Instruction Instruction Instruction
. I \\ Storage Unit
sequentia s
A SISD ¢
.c% Operand [—®| Execution
Storage |<— Unit

©
§ Instruction Instruction Instruction Instruction
a SIMD MIMD Storage Storage Storage Storage
| | | |
Instruction Instruction Instruction Instruction
Unit Unit Unit Unit
Based on multiplicity I I I I
1 i Data . | Execution . | Execution Execution Execution
of instruction Storage | *| Unit ™ Unit ™ unit [Unit
streams, data Storage 5

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : o . & [UNIVERSITY of
. . . . e the L ¥ Enecgy WASHINGTON
University of Washington by Andrew Lumsdaine

SIMD and MIMD

« Two principal parallel computing paradigms (multiple ¢

But each have
their own data

Single instruction Sorseg Storage

at a time \ Y Y Y !

_—
M ultlple Instruction T T T T \

All execution
units execute in
(c)lock step

Unit
instruction \

EUS ru n Instruction Instrugtion Instruction > Instrugtion Instruction > Instruc_:tion
rage 5 Unit Storage Unit . Storage Unit
independently | ! } —| Coming
H Operand [—®| Execution Operand »| Execution Operand »| Execution
(W Own InStrS) Storage |<— Unit Storage |<— Unit Storage |« Unit up neXt

i Shared Memory

for ADVANCED COMPUT NOt Shared

AMATH 483/583 High

4

e ———

UNIVERSITY of
WASHINGTON

A More Refined (Programmer-Oriented) Taxonomy

* Three major modes: SIMD, Shared Memory, Distributed Memory

 Different programming approaches are generally associated with
different modes of parallelism (threads for shared, MPI for distributed)

A modern supercomputer will have all three major modes present

lllllllllllllllllllllll

PATTERNS Parallel Clomputers |
FOR PARALLEL | | e s
P ROG AM M ‘] NG SIMD MIMD g:g:\fgtfhaﬁground/ParaIIeIH
bl L |

Shared Memory

Distributed Memory

Wi —worrar U T w

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Scalable

Pacific Northwest
NATIONAL LABORATO!

Linear

Prodly Operated by Batese:
the LS. Department of Eneng)

UUUUUUUUUUU f
WASHINGTON

Multicore Architecture

Any CPU in the
Core is a \\ LI 1111111l Iast 4-5 years

FDREW +regs| |[¥. o7 . Feen [, pd
F r1 /< Instructions | ()
i —”D' r2
Each runsits + (g L2
r3
own sequence || ||E] b | Fetch i
. . — W — 12
of instructions ||~ [r5 | Load/Store - =
- 13| £
i _I! 0 Fetch L1 E D1
Each can access | 1 @M (1) - “‘EE’ D2
) B [Load/Store
its own data R \Z\ L2 A
E
T Wl L ‘ " (IE)1)
—»| |e I r5 Load/Store
cycle 7
OR VSPYWEN Each has memory Bl might be shared !

i
AVATI hierarchy | " pnvERsITY of

Process Abstraction

_

Stored in Process
Control Block (PCB

Set of information
about process
resources

Sufficient to be able
to start a process
after stopped

' Scheduling parameters

Also for accounting /
administrative
purposes

Process management

- Regqisters

Program counter
Program status wo
Stack pointer
Process state

Memory management
Pointer to text segment
Pointer to data segment
Pointer to stack segment

File management
Root directory
Working directory
File descriptors
User ID

Group ID

Priority

Process ID
Parent process

What does program
counter represent?

Process group
Signals

Time when process started
CPU time used

" Children’s CPU time

Time of next alarm

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

Process Lifetime Interrupt or Scheduler
system call dispatch

Can have many
many processes

running “at the exit
same time /
Admitted N
Terminated

/O or event /O or wait
completion event

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : - & ‘ UNIVERSITY of
. . . X foe o e of Kinegy WASHINGTON
University of Washington by Andrew Lumsdaine

Context Switch
PO and P1 _L— process P, operating system process P, External
are running interrupt or system call to OS
lexecuting J l \
processes v__— \
/ 3 save state into PCB, \\ OS does
/ - ~ .
What does : ~idle | | not do this
. ? []
this mean: reload state from PCB, 1
5 N - External
And this? || —_]| | |
[pidle interrupt or systemcall — || executing to OS
PCB = Process save state into PCB;)
Control Block [~ : Lidle | —{ Expensive!
~— — 1
\ ° /
m) reload state from PCB,)
xecuting V\ Silberschatz, Galvin, Gagne [l w:ﬂo& / 3

ow Do We Run Multiple Programs Concurrently?

& Grab File Edit Capture Window Help O XBOGMm O AF W4 B Wed10:48PM L Andrew Q
<)
Insert Design Transitions Animatiol
X cut 00 M H v- & | =
\ Copy ¥ 3 Insert Design Tra
Paste & Format X cut Go gle douglas adams Q

5 Copy * ¥ (5 tectures _week1 homewor
¥ Default Section (1] pqie

New
<7 Format slide Unresolved

1B E
Z%G@ o0

© Matrixs.opt05 | cpuid.s
}

| © cpuinfo.cpp | @ Matrix.cop | L7

* void hc\.stedMult\ply(const Matrix& A, const Matrix&B, Matrix&C) {

L or < AnumRows(); ++1)
0; 5 < B numColsQ); ++3) {
s L5
for (int k = @; k < A.numColsQ; ++k) {
&= ACLK) * 80,33
- }
€D -
5
}
i
6

[! void tiledMultiply2x2(const Matrix& A, const Matrix&B, Matrix&C) {
* L for (int i =0; i < A.numRowsO; i += 2 {
£ for (int j = @; j < B.numColsQ); j += 2) §
for (int k = @; k < A.numColsQ); ++k) {
7 i, 3)+=AG , k) *BCK, j)
CG , 3+ += A, K * BCk, j+1);
CCGi+l, §) += ACi+1, k) * BCk, § D;
= CCi+l, j+#1) += ACi+1, k) * BCk, j+1);

void tiledMultiply2x4(const Matrix& A, const MatrixgB, MatrixBC) {
for (int i = 0; i < A.numRowsQ); i += 2) {
- for Cint j = 0; j < B.numColsQ); j += 4) {
for (int k = 0; k < A.numColsQ); ++k) {
10 Ci o, 3)+=AG , k) *BCK, j)
CCGi, 3+ += AG , KD * BCk, 3+1);

G, 342 += AG , KD * BCk, 3+2);

= i, 343) += AG , KD * BCk, 3+3);

CCisl, J) += AGi#1, k) * BCk, § O3

CCi+l, 341D += AGi+1, k) * BCk, J+1);

CCi+l, 342D += AGi+1, KD * BCk, J+2);

CCitl, 343) += ACi+L, k) * BCk, 343);
}

void tiledMultiply4x2(const Matrixk A, const MatrixgB, MatrixgC) {
for (int i = 0; i < A.numRowsQ); i +=
for (int j = 0; j < B.numColsQ; j += 2) {
for (int k = 0; k < A.numColsQ); ++k) {
€, 3)+=ACG , k) *Bk, j)
C(i v J+1) 4= A(l - K * BCk, 34155

4=

i O * Rk i Y
=i=== Malmu:pp 7%(70 s) Git-master (C++/I WordWrap Abbrev) Wed Apr 19 10:48PM 1.93

@

All Books News Images Videos

o«

[Matrix.s.05 | € ama 1, nsesaouesiaaies
|Lums 6580WE31821=>
[Lums6580WE31821=>
|Luns 6580WE31821=>
[1ums6580WE31821=>
|Luns6580WE31821=>
L8.pptx
|Luns6580WE31821=>
1ums 6580WE31821=>

cd ..
cp L7/L7.pptx L8
cd L8

mv L7.pptx L8.pptx
open L8.pptx

1s

git add L8.pptx

il

Tools

ANATH 4&00/000 mgrn-rerormarce Sciernunc LoIrnputry opring £v 1y
University of Washington by Andrew Lumsdaine

of

F more

12

leople

ing
20ls.

UNIVERSITY of
WASHINGTON

Multitasking

Tasks can be
scheduled round

robin (time slicedy”

Concurrency!

/ Time

/ \ S L

>

Run to context —

. Fetch H
switch (system 3| [Feen [@ |E 2
call or interrupt) | el B IE 8
- — “‘E&’ D1
Clock . Exec%Jte I — Do

oo LML -] R Write B Load/Store

> - TTTTTTTTT

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 ‘ e | _university
University of Washington by Andrew Lumsdaine =

Multitasking on Multicore

Time sliced A single threaded
and mapped to| | task can only use

Concurrency!

/

separate cores one core at a time

- \
LR

v

Fetch

LTt
U=FEe[H=[m=eme

r0 L1

r1 lInstructions (|)

r2 L2

r4 (D) —

5 Load/Store -
L3 |

0 Fetch L1 E

r1 Instructions (|) |

r2 L2

r4 (D)

5 Load/Store

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

»»»»»»

Fetch

E

Load/Store

I

D1

D2

UNIVERSITY o of
WASHINGTON

|

Multitasking on Multicore

Parallelism!

S

What about L1, L27

: : : Shorter And L3 cache
Time sliced A multithreaded task timel
. run time!
and mapped to can use multiple S Threads can
separate cores cores at a time o e [ralmm share memory
/ \ // % 1 | Snstructions] | (1) \
=1 L2 L2
R
] W oad/Store (D) I 12
E{ =1 Loasrs ; : 2
] 0 Fetch L1 : D1
. ok = r2 Lo Load/Store
ocC — | r3
Time ML - % ” o) /
> oad/Store ’
B e [Access same

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019

University of Washington by Andrew Lumsdaine

=R f
ey pr s WASHINGTON /
|

variables

UNIVERSITY o

Cache Coherence | Hardware

Same variable can be

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019

managed in two different caches
\ N
A multithreaded task | | Cache coherence / What if one \
can use multiple memory consistency | | gets modified?
) hreads can
cores at a time RN SEETNATETE
I hsq e shaxe memory
= r — L1
F r1 ructions (|) \\
F r2 L .
DR o <SRl ML - (S
E __va r5 Load/Store (©) g :i\\
E 1) Fetch L1 E D1
| % r2 Lo B Load/Store
1 Clock — | r3
Time _ o ||EG b 7
Load/Store iy
Toee e T L Access same
variables

University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON
|

»»»»»

Multitasking on Multicore| Nonetheless, thisis the
essence of parallel computing

In 1/8 the Parallel computation isn’t
time (?) done until all cores are done
L L i rdl ¥
i o Not the same as
r0 N
Need enough % 1| <nsiwetons] | (1) concurrent
cores (8) = [L2
" E :i “‘E» L1 B Fetch 11
Work needs to - W 5] oassoe | © LIE 2
be balanced oY ey e [- —
_ i r1 <lnstructions (|) — D2
N % r2 Lo B Load/Store
Bl .
Oops W r Load/St D)
e 5 oad/Store

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

W

UNIVERSITY of
WASHINGTON

Parallelization Strategy

A
vy

PATTERNS
FOR PARALLEL
PROGRAMMING
Al Rl

2

...
| SOFTWARE PATTERNS SERIES |

Timothy Mattson, Beverly Sanders, and Berna Massingill.

Finding
Concurrency

i

Algorithm
Structure

I

Supporting
Structures

i

Mechanisms

Implementation

2004. Patterns for Parallel Programming(First ed.). Addison-

Wesley Professional.

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019

University of Washington by Andrew Lumsdaine

nnnnnnnnnnn of /

. - Decompose problem into pieces
Finding Concurrency
. that can execute concurrently
Into tasks that can / Finding Concurrency
execute concurrently |- - Dependency Analysis -
' Decomposition . 5
— L Group Tasks T —— ,
i sk Decomposition «-» ' <-> Design Evaluation | |
Data Decomposition Orderi;l'asks o '
// Data Sharing
Units that can be operated 7
on (relatively) independently Algorithm
Structure
Supporting
Structures
NORTHWEST INSTITUTE for ADVANCED COMPUTING Implementation mmm:g%;; ‘ W
SN) Mechanisms FRNRET WRSHINGTON

Ways to group tasks to simplify

management of dependencies
Finding Concurrency/

S | Dependency Analysis”_
Decomposition : :

Finding Concurrency

' |, Group Tasks . ,
Task Decomposition ' P , : !
. | § <> | Design Evaluation | |
. | Data Decomposition Order Tasks | SRR~ '
7] » ’
/ Data Sharing

Ways to group tasks to simplify S —— 5

management of dependencies / } AN
Algorithm | Given a decomposition,
Structure
Ways to order tasks for ; ways to share data
' among tasks
correctness, other constraints Supporting g
Structures

NORTHWEST INSTITUTE for ADVANCED COMPUTING Implementation ‘ W
Pacific Northwest £
AMATH 483/583 Figh-Performance Scientiic | N o ~sHamieme w::\::as,:fm : WASHINGTON

University of Washington by Andrew

Algorithm Structure Fundamental
Finding

' organizing principle
Organize around G g gp P

concurrent tasks f /

Algorithm Structure 7
~ |Organize by Tasks | | Organize by Data Decomposition: | Organize by Flow of Data
Task Parallelism Geometric Decomposition Pipeline
Divide and Conquer Recursive Data Event-Based Coordination
Exploit potential t
P P] o Supporting
concurrency in divide Structures
and conquer algorithms ¢
Implementation
NORTHWEST INSTITUTE for ADVANCED COM /Iy ~ A/

AMATH 483/53 g Spring 2019 1/ . i WASHINGTON X
University of Washington by Andrew Lumsdaine v = B

Algorithm Structure

Fundamental

Finding
Concurrency

organizing principle

}

e

Algorithm Structure 7

___ D

Organize by Tasks EFOrganize by Data Decomposition . Organize by Flow of Data

Task Parallelism , Geometric Decomposition Pipeline

Divide and Conquer

Recursive Data

\ Event-Based Coordination

Organize around a large
data structure that is

Supporting
Structures

Organize around operations
on recursive data structure

broken into “chunks”

}

NORTHWEST INSTITUTE for ADVANCED COM¥F

AMATH 483/58

Implementation
Mechanisms

W

University of Washington by Andrew Lumsdaine

g Spring 2019 % . / UNIVERSITY of
E tment of Enengy WASHINGTON

|

Algorithm Structure

Fundamental . Finding Organize by sequence
.. . oncurrenc i
organizing principle y of independent stages
\\ t
Algorithm Structure
~ Organize by Tasks | | Organize by Data Decomposition| | Organize by Flow of Data |
Task Parallelism Geometric Decomposition Pipeline

Divide and Conquer

Recursive Data

__

Event-Based Coordination

__

communication among tasks

Organize by inherent

Supporting
Structures
Implementation
NORTHWEST INSTITUTE for ADVANCED COM})
Mechanisms
AMATH 483/58 g Spring 2019

University of Washington by Andrew Lumsdaine

W

UNIVERSITY of o
WASHINGTON)

Supporting Structures

Finding

Concurrency

Organize communication
and sharing between UEs

!

Algorithm
Structure

Explicitly manage
shared data

AN

distributing tasks

Centralized control

:

N\ [!

Supporting Structures

__

Program Structures

Translate loop
bodies into tasks

SPMD

Data Structuies

/ Safely share

a queue

/

Shared D'ata

Manager/Worker

)

Sets of ™
dynamic tasks

Shared Queue

~ Loop Parallelism

Distributed Array /] |

Manage array
data partitioned
among UEs

Fork/Join

ORTHWEST INSTITUTE for ADVANCED cOMP [lUEIEUR

N
AMATH 483/583

Mechanisms

University of Washington by Andrew Lumsdaine

7

UNIVERSITY of
WASHINGTON

Implementation Mechanisms

Finding
Concurrency

!

Algorithm
Structure

Enforce ordering

!

lifetimes \

nstraint Supporting needs to be when UEs
Manage task constraints Structures

Get data where it

don’t share memory

!

mplementation Mechanisms

AMATH 4837583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

\
A
:
/ X "

Example

* Find the value of 7T

« Using formula 45

1
4
= dx
0 1‘|‘$2

0.0 0.2 0.4

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

0.6

0.8

1.0

UNIVERSITY of
WASHINGTON

Discretization

4.5

4.0 -

35 T _
3.0 \]

2.5 \ i

2.0

>

0.0 0.2 0.4 0.6 0.8 1.0

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Pacific Northwest
NATIONA ABORATORY
UNIVERSITY of

WASHINGTON

Procdly O by Bavese
for the ULS.)

Numerical Quadrature

4.5

4.0 -

3.5 i

3.0 \ |

2.5 0
20 p 3 . T~

I+1

>

0.0 0.2 0.4 0.6 0.8 1.0

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : . i [UNIVERSITY of
. . . . o the LS Energy WASHINGTON
University of Washington by Andrew Lumsdaine

Numerical Quadrature

4.5
4.0 4 — 4
| — 1+2(i)2 14 (ih)?
3.5]
// 4
N \ A=h — |
- < 1+ (ih)
P
2:3 0 1) \ |
20 p] i B
— i+1
1.5 N-1
1.0 v
0.0 0.2 0.4 0.6 0.8 1.0

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : o7 | _UNIVERsITY, A
University of Washington by Andrew Lumsdaine ot

Numerical Quadrature

4.5 . . .

4.0

3.5

3.0 \

251 0

>

2.0 h

I+1

0.0 0.2 0.4 0.6

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

Numerical Quadrature
4.5 . : . .
double pi = O;
4.0 — for (int i = 0; 1 < N; ++1i) { -
s 1 pi+=h* 4.0/ (1 + ish*i*h);
—}
3.0 \]
>
25 0 .
\
3
> i+1
1.5 N-1
1.0 v
0.0 0.2 0.4 0.6 0.8 1.0
NORTHWEST INSTITUTE for ADVANCED COMPUTING

Finding Concurrency

Finding Concurrency

Decomposition
Group Tasks

'
Order Tasks

!

Data Sharing

Task Decomposition

Data Decomposition

Algorithm
Structure

!

Supporting
Structures

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific C
University of Washington by Andrew

Implementation [SeESEE=a- W

NATIONAL LABORATORY
UNIVERSITY of

M eCh an ism S o S Dopetrt of oy WASHINGTON / 1

Finding Concurrency

4.5

Partial sums are

Can be computed
concurrently

all independen
//./V

i

)

4.0—

3.5
3.0
>

2.5

2.0

\l

\

| |

I+1

0.2

0.4

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019

0.6

University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

Finding Concurrency Sum over

partial sums Partial sum
4.5 . . . 7 .
I I / I /\(
a0l \ mm! _
— k< i<(k+1)N 1
3.5
T~ h
SULLLD DN D DN s
3.0 I k=0 i i=kN |
> —
2.5 |
\
2.0 i
I+1
1.5 N-1
1.0
0.0 0.2 0.4 0.6 0.8 1.0

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : o . & j UNIVERSITY of
. . . . o the of Energy WASHINGTON
University of Washington by Andrew Lumsdaine

Finding Concurrency

Finding Concurrency

.

o mmmneeennsnneessnie oo | Dependency Analysis |
Decomposition | :
: L Group Tasks
.| Task Decomposition | |)
/ . | Data Decomposition Orderig'asks
Data Sharing
Decomposetotal || | l=mmmmme
sum into a sum of) N
partial sums Each task can be Algorithm Need to sum up
Structure .
computed 7 independent
concurrently SupRatiG partial sums
Structures

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific C
University of Washington by Andrew

Implementation pac-,ﬁeggmgmg , W
UNIVERSITY of

Mechanisms T e WASHINGTON

Alaorithm Structure

Partial sums are
independent tasks

Finding
Concurrency

}

Orgenize by Tasks

Task Parallelism

Algorithm Structure

Geometric Decomposition

Recursive Data

__

e e

Organize by Flow of Data

Pipeline

Event-Based Coordination

__

Can be executed
in parallel

NORTHWEST INSTITUTE for ADVANCED COM¥F

AMATH 483/54 g Spring 2019

Supporting
Structures

}

Implementation
Mechanisms

University of Washington by Andrew Lumsdaine

W

UNIVERSITY of
WASHINGTON

|

Supporting Structures

Finding

Concurrency

!

Algorithm
Structure

Global sum (may or
may not be shared)

:

/

e

Supporting Structures

Program Structures

Translate loop SPMD

Data Structures

Shared Data /

bodies into tasks Manager/Worker

Shared Queue

i [Loop Parallelism

Distributed Array

Fork/Join

Mechanisms rthwest

NORTHWEST INSTITUTE for ADVANCED COMP [abiaCSlENCl —~— A/
Pacific Northwest £
AT e e ng Spri Crmemmmm. | wASERNGYSN

University of Washington by Andrew Lumsdaine

Use C++
async

Implementation Mechanisms

Finding
Concurrency

!

Algorithm
Structure

No orde

constraints

!

Supporting
Structures

ring

N\

!

Use shared memory

ST T T T TN

mplementation Mechanisms

ST T T T TN

AMATH 4837583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Sequential Implementation (Two Nested Loops)

[double h = 1.0 / (double) intervals;//// Discretization

For each set
of discretized Mi = 0.0;
points for (int k = 0; k < intervals; k += blocksize) {
| double partial_pi = 0.0;
Compute | —for—(int i = k; i < (k+blocksize); ++i) {
partial sum partial_pi += 4.0 / (1.0 + (i*h*ix*h));
t

___pi += h * partial_pi;

Accumulate }
final sum

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performan
University of Washington by Andrew Lumsdaine

ce Scientific Computing Spring 2019 / : j Vyx;‘]’;{";gﬁ;{q / S

Threads vs Tasks

void sayHello(int tnum) {
cout << "Hello World. I am thread " << tnum << endl;

} \
int main() {
std: :thread tid[16];

Task

Launch | —1 “fork”

for (int 1 = 0; i < 16; ++i)

tid[i] = thread (sayHello, i); threads
for (int i = 0; i < 16; ++i) Wait for tasks 1 — ”join”
tid[il.join(); to finish

return O;

}

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

Crnengy

Threads

returns void

_—
Thread — |

void partial_pi(unsigned long begin, unsigned long end) {

double partial_pi = 0.0;

for (unsigned long i = begin; i < end; ++i) {
partial_pi += 4.0 / (1.0 + (i*h*ix*h));

}

Oops

How do we get
partial sums?

How do we update
global total?

return partial_pi;

+

int
main(int argc, char *argvl[])
{
double h = 1.0 / (double) intervals;

ouble pi = 0.0;
int k = 0; k < intervals; k += blocksize) {

pi += h * partial_pi;
+

std::cout << "pi is approximately " << pi << std::endl;

NORTHWEST INSTITUTE for A return O;
}

Threads

Task

Assign task
to thread

NORTHWEST INSTITUTE for AL

L~

void partial_pi(unsigned long begin, unsigned long end,

}

double partial_pi = 0.0;

for (unsigned long i = begin; i < end; ++i) {
partial_pi += 4.0 / (1.0 + (ix*h*ix*h));

b

pi += h#*partial_pi;

int
main(int argc, char *argv[])

{

std: :vector<std::thread> threads;
double h = 1.0 / (double) intervals;

double pi = 0.0;
for (unsigned long k = 0; k < num_blocks; ++k) {
threads.push_back(std: :thread(partial_pi,
k*blocksize, (k+1)#*blocksize, h, std::ref(pi)));
}

for (unsigned long k = 0; k < num_blocks; ++k) {
threads[k].join();
}

std::cout << "pi is approximately " << pi << std::endl;

return O;

double h, double& pi)

Threads

Lgcal Shared
variable

variable
/ ~

D

void partial_pi(uMnsigned long begin, unsigned long end, double h, double& pi) {
double partial_pi = 0.0;
for (unsigned long i = begin; i < end; ++i) {
partial_pi += 4.0 / (1.0 + (i*h*i*h));

+
pi += h*partial_pi;

by \\

Update shared
variable

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : 2 & j UNIVERSITY of
. . . . s Energy WASHINGTON
University of Washington by Andrew Lumsdaine

Threads

int main(int argc, char *argv[]) {

Container for
created threads

double h = 1.0 / (double) intervals;

Thread
constructor

—_ Have to ?pr|C|tIy
std: :vector<std::thread> threads; tag this as a
, reference
double pi = 0.0;

for (unsigned long k = 0; k < num_blocks; ++k) {
threads.push_back(

std: :thread(

partial_pi, k+*blocksize, (k+1)*blocksize, h, std::ref(pi)));

Function that
will be the task

for (upnsigned long k = 0; k < num_blocks; ++k) {

reads[k].join()

Arguments to
the function

std::cout << "pi is appreximately " << pi << std::endl;

return 0; We are invoking

} std::thread, not

)) SATIC ¥ 19 (
partial pi Mt | glvERsYo

AMATH 483/583 High-Per
University of Wi

Results

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Correct
$./thrpi ////
pli is approximately 3.14159
Correct
$./thrpi ////
pi is approximately 3.14159 Exactly same
program!
Incorrect! /
happened?

UNIVERSITY of
WASHINGTON

Name This Famous Couple .
Bonnie Parker

Clyde Barrow

NORTHWEST INSTITUTE for ADVANCED COMPUTING \V/ W
Paci"f:kc:TNorthwesTEjRy !

AMATH 483/583 High-Performance Scientific Computing Spring 2019 /" . . UNIVERSITY of / 2
ety WASHINGTON

University of Washington by Andrew Lumsdaine 1[

Bonnie and Clyde Use ATMs

int bank_balance = 300;

void withdraw(const string& msg, int amount) {
int bal = bank_balance;
string out_string = msg + " withdraws " + to_string(amount) + "\n";
cout << out_string;
bank_balance = bal - amount;

}

int main() {
cout << "Starting balance is " << bank_balance << endl;

thread bonnie(withdraw, "Bonnie", 100);
thread clyde(withdraw, "Clyde", 100);

bonnie. join();
clyde.join();

cout << "Final bank balance is " << bank_balance << endl;

return O;

NORTHWEST INSTITUTE for ADVANCED COMPUTING : ‘wa?’// 1"\7’
Pacific Northwest /

AMATH 483/583 High-Performance Scientific Computing Spring 2019 - . UNIVERSITY of
. . . ; or i WASHINGTON
University of Washington by Andrew Lumsdaine /

NATIONAL LABORATORY

Withdraw Function

int bank_balance = 300; Get balance

void withdraw(const string& sisg, int amount) {
int bal = bank_balance;
string out_string = msg + " withdraws " + to_string(amount) + "\n";
cout << out_string;
bank_balance = bal - amount;

+

| Compute the
Save new new balance
balance

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : . o j UNIVERSITY of
. . . . for the US. Depuartment of Energy WASHINGTON
University of Washington by Andrew Lumsdaine

Making Concurrent Withdrawals

int main() {

cout << "Starting balance is " << bank_balance << endl;
Launch |

threads thread bonnie(withdraw, "Bonnie", 100);
thread clyde(withdraw,—"Clyde", 100); Run withdraw

bonnie.join(); \ function

clyde.join(); Constructor

cout << "Final bank balance is " << bank_balance << endl;

R (O . Wait for
completion

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : . & j UNIVERSITY of
. . . . o the of Energy WASHINGTON
University of Washington by Andrew Lumsdaine

Bonnie and Clyde Use ATMs

$./a.out

Starting balance is 300
Bonnie withdraws 100
Clyde withdraws 100

Is this
correct?

W

NORTHWEST INSTITUTE for ADVANCED COMPUTING
UNIVERSITY of

AMATH 483/583 High-Performance Scientific Computing Spring 2019 | T, R AT o 2
University of Washington by Andrew Lumsdaine / - - o

What Happened? |Bonnie’s thread,
bal = 300

void| withdraw St string& msg, int amount) { Clyde’s thread,

int| bal ank_balance; baI = 300
string out_s = msg + " withdraws " + to_string(amt)

| void withdr

Context switch int bal”= bank_balance;

strying out_s = msg + " withdraws " + to_string(amt) + "\n";

cout << out_s; .
bank_balance = bal - amount; Context switch

} | \

] i cout << out_s; PrOfit!
bal is still 300 bank_balance = bal - amount;
} AN
bank_balance bal is still 300
gets 200 ,

bank_balance

/ AT T / & ol

. / UNIVERSITY of Y
AMATH 4 g e t S 2 O O ' = = WASHINGTON / ¥
/ b

What Happened: Race Condition

« Final answer depends on instructions from different threads are
interleaved with each other

« Often occurs with shared writing of shared data
« Often due to read then update shared data
 What was true at the read is not true at the update

W

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 ‘ RIS ?_
University of Washington by Andrew Lumsdaine y e o)

Critical Section Problem

int bank_balance = 300;

void withdraw(const string& msg, int amount) {
int bal = bank_balance;
string out_string = msg + " withdraws " + to_string(amount) + "\n'";
cout << out_string;

bank_balance = bal - amount; _

} AN

N\
We want to tell When some thread is executing
operating system not to this critical section, no other
run anything else here thread may execute it

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : o . & j UNIVERSITY of
. . . . o the of Energy WASHINGTON
University of Washington by Andrew Lumsdaine

The Critical-Section Problem

* n processes all competing to use some shared data

« Each process has a code segment, called critical section, in which the
shared data is accessed.

* Problem — ensure that when one process is executing in its critical
section, no other process is allowed to execute in its critical section.

 What do we mean by “execute in its critical section™?

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

W

UNIVERSITY o

f o)
WASHINGTON /)

Solution to Critical-Section Problem

 Mutual Exclusion - If process Pi is executing in its critical section,
then no other processes can be executing in their critical sections

* Progress - If no process is executing in its critical section and there
exist some processes that wish to enter their critical section, then the
selection of the processes that will enter the critical section next
cannot be postponed indefinitely

 Bounded Waiting - A bound must exist on the number of times that
other processes are allowed to enter their critical sections after a
process has made a request to enter its critical section and before
that request is granted
— Assume that each process executes at a nonzero speed
— No assumption concerning relative speed of the N processes

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 ® e /| _UNIVERSITY, f
University of Washington by Andrew Lumsdaine LA e

Pacific Northwest
NATIONAL LABORATO!

Critical Section Problem

int bank_balance = 300;

void withdraw(const string& msg, int amount) {
int bal = bank_balance;
string out_string = msg + " withdraws " + to_string(amount) + "\n'";
cout << out_string;
| bank_balance = bal - am
F

\ N

=

Let’s just think about

This is a critical section .
mutual exclusion for now

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : e & ‘ UNIVERSITY of
. X . X for the | ¥ Enecgy WASHINGTON
University of Washington by Andrew Lumsdaine

Critical Section Problem

Take the lock

bool lock = false;

int bank_balance = 300;

void withdraw(const-sString& msg,
while (lock == true)

Test if another

thread is holding
the lock

int amount) {

\\\\ ;

Execute
critical
section

lOCk = true ;\

int bal = bank_balance;

cout << out_string;
bank_balance = bal - amount;

Release lock

—— lock = false;

by

Spin ifitis

Fall through when lock == false

string out_string = msg + " withdraws " + to_string(amount) + "\n'";

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

Aside

bool lock = false;
int bank_balance = 300;
void withdraw(const string& msg, int amount) {
string out_string = msg + " withdraws " + to_string(amount) + "\n";

cout << out_string;
bank_balance -= amount;

} \
\

Still a race

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

. W

Pacific Northwest 2]
Zyje J oal

UNIVERSITY of et

of Energy WASHINGTON 1
2

Aside

bool lock = false;

int bank_balance = 300;

void withdraw(const string& msg, int amount) {

Then write

\\\\\ string out_string = msg + " withdraws " + to_string(amount) + "\n'";

\\\\ cout << out_string;
bank_balance = bank_balance - amount;

/,
/ A

Still a race Read Compute

NORTHWEST INSTITUTE for ADVANCED COMPUTING ~ A/
g Pecifictoriest

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
Eneny WASHINGTON

Critical Section Problem

bool lock = false;

int bank_balance = 300;

void withdraw(const string& msg, int amount) {
Critical
. string out_string = msg + " withdraws " + to_string(amount) + "\n'";
section t o s
cout << out_string;

bank_balance = bank_balance - amount;

NORTHWEST INSTITUTE for ADVANCED COMPUTING
Pacific N
ASONN UNIVERSITY of

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : o e R AILer
University of Washington by Andrew Lumsdaine e e

Take the lock

Execute
critical
section

Solution (?)

[~

Release lock

+

bool lock = false;

int bank_balance = 300;

| m—

Test if another
thread is holding

the lock

string out_stri
cout << out_string;

b

lock = true; ———

\ whilw

void withdraw(const string& msg, int amount) {

Spin ifitis

= msg + " withdraws " + to_string(amount) + "\n";

Fall through when lock == false

bank_balance = bank_balance - amount;

lock = false;

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Enengy

UNIVERSITY of
WASHINGTON

Solution (?)

Common
pattern (when

correct)

Take the lock

I

bool lock = false;
int bank_balance = 300;
void withdraw(const st

string out_stri
cout << out_

whilW Spin ifitis

Lock might be
taken between the
test and the set

//kOCk = trué?“-—————________

Test if another
thread is holding
the lock

ing% msg, int amount) {

= msg + " withdraws " + to_string(amount) + "\n";

Fall through when lock == false

bank_balance = bank_balance - amount;

lock = false;

+

NORTHWEST INSTITUTE for ADVANCED COMPUTI prOblem for anOther

We’ve traded one
critical section

AMATH 483/583 High-Performance Scientific Computing Spring 2019 ‘ e & UNIVERSITY of

University of Washington by Andrew Lumsdaine

WASHINGTON

Synchronization Hardware

« Many systems provide hardware support for critical section code

* Uniprocessors — could disable interrupts
— Currently running code would execute without preemption
— Generally too inefficient on multiprocessor systems
» Operating systems using this not broadly scalable
 Modern machines provide special atomic hardware instructions
« Atomic = non-interruptable
— Either test memory word and set value
— Or swap contents of two memory words

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 g e i /| uNiversiTY, s)
University of Washington by Andrew Lumsdaine v e |

Test and Set

return rv: return rv:
} | \ }

bool TestAndSet (bool& target) bool TestAndSet (bool *target)
{ {

bool rv = target; bool rv = *target;

target = TRUE; *target = TRUE;

| N

These are the Implemented in
semantics, not the hardware as an
implementation invisible instruction

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

Compare And Swap
void CompareAndSwap (bool& a, bool& b) void CompareAndSwap (bool *a, bool *b)
{ {
bool temp = a; bool temp = *a;
a = b; xa = *b;
b = temp: *b = temp:
} +
\ AN
These are the Implemented in
semantics, not the hardware as an
implementation invisible instruction
NORTHWEST INSTITUTE for ADVANCED COMPUTING

Correct Withdraw

int bank_balance = 300;
bool lock = false;

void withdraw(const string& msg, int amount) {
Under what string out_s = msg + " withdraws " + to_string(amt) + "\n";
cout << out_s;

condition will

we fall through? thile (TestAndSet(lock) == true)—
| ;

Spin while the value is
true (another thread

What is the holds the lock)
bank_balance —-= amount;
state of the
lock? lock = false; Release the lock
+

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : o . & j UNIVERSITY of
. . . . o the of Energy WASHINGTON
University of Washington by Andrew Lumsdaine

Correct Withdraw

int bank_balance = 300;
bool lock = false;

void withdraw(const string& msg, int amount) {
string out_s = msg + " withdraws " + to_string(amt) + "\n";
cout << out_s;

What is the while (TestAndSet(lock) == true) — "Spin lock”
CPU doing? ; (common pattern)
I bank’ balance —-= amount;
How is it

affecting other [0k = false; Is this a good
threads? programming

ion?
NORTHWEST INSTITUTE for ADVANCED COMPUTI abStraCt|On)

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : o . & j UNIVERSITY of
. . . . o the of Energy WASHINGTON
University of Washington by Andrew Lumsdaine

Multitasking on Multicore| Nonetheless, thisis the
essence of parallel computing

In 1/8 the Parallel computation isn’t
time (?) done until all cores are done
L L i rdl ¥
i o Not the same as
r0 N
Need enough % 1| <nsiwetons] | (1) concurrent
cores (8) = [L2
" E :i “‘E» L1 B Fetch 11
Work needs to - W 5] oassoe | © LIE 2
be balanced oY ey e [- —
_ i r1 <lnstructions (|) — D2
N % r2 Lo B Load/Store
Bl .
Oops W r Load/St D)
e 5 oad/Store

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

W

UNIVERSITY of
WASHINGTON

Numerical Quadrature Task

double partial_pi(unsigned long begin, unsigned long end, double h) {
dgouble partial_pi = 0.0;
fdr (unsigned Ieng i = begin; i < end; ++i) {
partial_pi += ANO / (1.0 + (ix*h*i*h));
+
re%urn partial _pi;

+

N\

Nothing remarkable Nothing remarkable
about this function about this function

NORTHWEST INSTITUTE for ADVANCED COMPUTING
UNIVERSITY of

CARTER4 834580 HhwRertaioTaAct ueatiie CoiprsigoS Viaghefen ; o “ | JUNIVERSITY of
University of Myashitrgtor. by £derev Lumsdaine o Sl

Performance CPUtime { OStime

$ time ./ta

p1 5000600000 1 Elapsed time
pli is approxim y i;lélBQ//

2.006u 0.006s 0:02.01 99.5%— Utilization

CPU time_-{ OS time

$ time ./taskpi 5000
pli is approxima

3 Elapsed time
1.895u70.008s 0:00.957198.9% Utilization

CPU time |4 OS time

$ time ./tas
pli 1s ap

1 500000000 4 .
6ximately 3.141 Elapsed time
2'.-02-9'11 0'007' OO‘Q'.‘S' D 9167'-0 Utilization

CAEATSR4 83458 HiyhwRertatioraActuBoicpifio ComerditygoB pviaghZftdn

University of byashirgton by ddairew Lumsdaine

UNIVERSITY of

Performance

Elapsed time Utilization
OS time time /task 500000000/ 8
CPUtHne~\P1 I's. approxi ely 3.14159
3. 669u .008s 0:00.48 762.5%
EIapsed time Utilization
OS time time ./taskpi/500000000/16
P ime | ST 0L,
Elapsed t|me Utilization
05 time time ./taskp'WZ/ 500000000/ 50000
CPU time ~hP1 1s~approximately 3.14/159

2.963u 1.194s O:

00.92 451.0%

Parallel Speedup, Parallel Efficiency

Speedup on p Time to run problem | | Time to run problem
size n on one PU size n on p PUs

processing units
S(p) =
)= Tn,p)

Divided by

Efficiency on p Ideal parallel actual parallel
processing units | | execution time || €xecution time

10 |

Speedup

/ T(n,1)/p n,1)/T(n,p) _ Sp) . "

) = T(n,p) p p

NORTHWEST INSTITUTE for ADVANCED COMPUTING —
/ e — ' universiT ¥ of / :1

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Scaling

Parallel Speedup

Superlinear
(fishy)

Linear (ideal)

Sublinear (typical)

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

10 | 1

o

=}

©

bt 1

Q 10

(7p]

10° : N
10° 10* 102

WASHINGTON

Name This Famous Person

‘ . : "Validity of the single processor approach to
achieving large-scale computing capabilities,”
AFIPS Conference Proceedings (30): 483—-485,
1967.

Gene Amdahl (1922-2015)

Amdahl’s Law

NORTHWEST INSTITUTE for ADVANCED COMPUTING . ‘ W

UNIVERSITY of .
WASHINGTON 1)

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Limits to Parallelism (Amdahls’s Law) Sequential

Inherently < T(n,1) / eXEClition time
sequential

|
Inherently < > < .
sequential ol (n,1) (1 —a)T(n, 1)\ perfectly

\‘ parallelizable

T(na 1) — aT(”? 1)]_|' (1 R a)T(na 1)‘\ Perfectly
parallelizable

T(n,p) = aoT(n,1)+ %(1 —a)T(n,1)

Ideal speedup (for

T(n,1)(a+ (1o

parallelizable portion)

Sequential
portion

'NSTITUTE for ADVANCED COMPUTING »
UNIVERSITY of

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Limits to Parallelism (Amdahls’s Law)

Sequential
Inherently < T(n,1) / eXEClition time
sequential
]
Speed b > >
peedup oT'(n, 1) (1—a)T(n,1)
N \ Perfectly
S(p) = T(n, 1) — T(n,i) parallelizable

p
1 1 lllllllll' 1
oz—l-%(l—oz) e Lo—mo (p) on

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 i i UNIVERSITY of
University of Washington by Andrew Lumsdaine / cil s bl

Limits to Parallelism (Amdahls’s Law) perfectly
Inherently aT'(n,1) (1—-a)T(n,1) — parallelizable
<< >
T(n,1)
_\ | Speedup is the
- —> To this ratio of this
T'(n,p)|p—oo
T(n,1)
, 1 S(p) = =
lim S(p) = — (7, p)
p—0 87
NORTHWEST INSTITUTE for ADVANCED COMPUTING -

Limits to Parallelism (Amdahl’s Law)

Parallel Speedup

a=0.05 Asymptotically
10° | approaches 20
L%101 -]
100))) L , . . N

10° 10% 102

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : i j UNIVERSITY of
. . . . s Energy WASHINGTON
University of Washington by Andrew Lumsdaine

Limits to Parallelism

Parallel Speedup

No matter how
many cores added

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

10° ¢ — , _
o= 0.01
Not scalable

10° | | Exascale machines might _:
§ i have millions of cores / |
g Asymptotically | |
i 10' } approaches 100 | |
On 1024 cores 3

100 : ol \\ C
10° 10° 102 10°

UNIVERSITY of
WASHINGTON

* Doing the same problem faster and faster is not how we
use parallel computers

« Rather, we solve bigger and more difficult problems
 |.e., the amount of parallelizable work grows

aT(n’ 1) p(l — a)T(n, 1)

There are no Limits (Gustafson’s Law) [

A
\J

T(n,p) =T(n,1)

NORTHWEST INSTITUTE for ADVANCED COMPUTING

CC BY-SA 3.0, https://en.wikipedia.org/w/index.php2CunidslZa51 725 s 2" = WASHINGTG!

There are no Limits (tafson’s Law) Perfectly
aT'(n,1) p(1 —a)T n/l’)/ parallelizable
< >« >

< >

T(n.p) = T(n, 1) — Parallel

performance

Ratio of non sped
up to sped up

S(p) :\&T(n 1)45}25%1723)04):/@ 1) aT(n,l)?zgzl,;)a)T(n;) —a+p(1l—a)

Bp) =) m—p | lm E()=(1-0) |

NORTHWEST INSTITUTE for ADVANCED COMPUTING .
Pacific Nortiwest

AMATH 483/583 High-Performance Scientific Computing Spring 2019] et el UNIVERSITY of
University of Washington by Andrew Lumsdaine e

Two Types of Scaling

Weak scaling
Gustafson

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

|deal
| Parallell Spe'edl'Jp'
Scalable

10°
. Strong scaling I
§ Amdahl
&

10" / :

Not scalable
10° - N —
10° 10! 102

UNIVERSITY of
WASHINGTON

Stay Tuned

e C++ threads
« C++ async()
e C++ atomics

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : o . & j UNIVERSITY of
. . . . e the L ¥ Enecgy WASHINGTON
University of Washington by Andrew Lumsdaine

Thank you!

NORTHWEST INSTITUTE for ADVANCED COMPUTING \gy’/ W
y Pacific Northwest /

NATIONAL LABORATORY

UNIVERSITY of

AMATH 483/583 High-Performance Scientific Computing Spring 2019 j /
f Energy WASHINGTON

University of Washington by Andrew Lumsdaine

Creative Commons BY-NC-SA 4.0 License

D0 e,

© Andrew Lumsdaine, 2017-2018

Except where otherwise noted, this work is licensed under

https://creativecommons.org/licenses/by-nc-sa/4.0/

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

W

UNIVERSITY o

f
WASHINGTON

[
b1
1
24

