Discretized

Each grid point (I, j) in the mesh

- Del operator $\nabla \phi=\frac{\partial \phi}{\partial^{2}}+\frac{\partial \phi}{\partial y^{2}}$

$$
\nabla^{2} \phi=\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}
$$

First derivative

- Finite difference approximationto uetivanve

$$
\begin{array}{rl|c|}
\frac{\mathrm{d} x}{\mathrm{~d} t}\left(t_{0}\right) & \approx \frac{x\left(t_{0}+h\right)-x\left(t_{0}\right)}{h} & \text { Derivative of } \\
\frac{\mathrm{d} x}{\mathrm{~d} t^{2}}\left(t_{0}\right) & \approx \frac{\mathrm{d} x}{\mathrm{~d} t}\left(t_{0}+h\right) \frac{\mathrm{d} x}{\mathrm{~d} t}\left(t_{0}\right) & \text { first derivative } \\
& =\frac{x\left(t_{0}+h+h+h\right)-x\left(t_{0}+h^{2}-x\left(t_{0}+h\right)+x\left(t_{0}\right)\right.}{} \\
& =\frac{x\left(t_{0}+2 h\right)-2 x\left(t_{0}+h\right)+x\left(t_{0}\right)}{} \\
& =\frac{\left.x\left(t_{0}+h\right)-2 x x^{2}\right)+x\left(t_{0}-h\right)}{h^{2}} & \text { Approximate } \\
\text { second derivative }
\end{array}
$$

- Finite difference approximation to del

